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C.N.R.S. U.R.A. 0226, Math., Université Bordeaux I, F-33405 Talence cedex, FRANCE
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William Jockusch
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA

Simon Plouffe
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Abstract

We study a sequence, c, which encodes the lengths of blocks in the Thue-Morse
sequence. In particular, we show that the generating function for c is a simple
product.



Consider the sequence

c : c0; c1; c2; c3; : : : = 1; 3; 4; 5; 7; 9; 11; 12; 13; : : :

defined to be the lexicographically least sequence of positive integers satisfying
n ∈ c implies 2n =∈ c. In fact, the lexicographic minimality of c makes it possible
to replace the previous “implies” with “if and only if.” Equivalently, c is defined
inductively by c0 = 1 and

ck+1 =
{

ck + 1 if (ck + 1)=2 =∈ c
ck + 2 otherwise (1)

for k ≥ 0. This sequence was the focus of a problem of C. Kimberling in the Amer-
ican Mathematical Monthly [?]. (In fact, he looked at the sequence 4c0;4c1; 4c2; : : :)
The solution was given by D. M. Bloom [?]. Our Corollary ?? answers essentially
the same question.

At the 4è Colloque Séries Formelles et Combinatoire Algébrique (Montréal,
June 1992) Simon Plouffe and Paul Zimmermann [?] posed the following problem.
Show that the generating function for c is

∑

k≥0

ckx
k =

1
1 − x

∏

j≥1

1 − x2ej

1 − xej
(2)

the sequence of exponents being

e : e1; e2; e3; e4; : : : = 1; 1; 3; 5; 11; 21; 43; : : :

where e1 = 1 and

ej+1 =
{

2ej + 1 if j is even
2ej − 1 if j is odd (3)

for j ≥ 1. They came up with this conjecture by using a method that goes back
to Euler. First they assumed that the generating function was of the form

∏

j≥0

1 − xaj

1 − xbj

for a certain pair of sequences aj ; bj. Then they took the logarithm to convert
the product into a sum. Finally they used Möbius inversion to come up with
the candidate sequences. Details of this procedure will be found in the text of
Andrews [?].

The purpose of this note is to prove (??). Before doing this, however, we will
show that c has a number of other interesting properties. Chief among these is
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the fact that c is closely related to the famous Thue-Morse sequence, t. See the
survey article of Berstel [?] for more information about t.

It is easy to prove the following proposition using the definition (??) and in-
duction.

Proposition 1 Given any positive integer n we have that n ∈ c if and only if
n = 22i(2j + 1) for some nonnegative integers i and j.

Let ´ be the characteristic function of c, i.e.,

´(n) =
{

1 if n ∈ c
0 otherwise.

Restating the previous proposition in terms of ´ yields the next result.

Lemma 2 The function ´ is uniquely determined by the equations

´(2n + 1) = 1
´(4n + 2) = 0

´(4n) = ´(n):

Another way of obtaining the sequence ´(n) for n ≥ 1 is as follows. Starting
from the sequence

101 • 101 • 101 • 101 • : : :

defined on the alphabet {0; 1; •}, fill in the holes with the sequence itself, obtaining:

101110101011101 • : : :

Iterating this process infinitely many times (by inserting the initial sequence into
the holes at each step), one gets a “Toeplitz transform” which is nothing but our se-
quence ´. The proof of this fact is easily obtained using Lemma ??. See the article
of Allouche and Bacher [?] for more information about Toeplitz transformations.

The connection with the Thue-Morse sequence can now be obtained. This
sequence is

t : t0; t1; t2; t3; : : : = 0; 1; 1; 0; 1; 0; 0; 1; : : :

defined by the conditions

t0 = 0
t2n+1 ≡ tn + 1 (mod 2)

t2n = tn:

We will need a lemma relating t and ´. All congruences in this and any future
results will be modulo 2.
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Lemma 3 For every positive integer, n, we have

´(n) = tn + tn−1:

Proof. This is a three case induction based on Lemma ?? and the definitions of
´ and t. We will only do one of the cases as the others are similar.

t4n + t4n−1 ≡ t2n + t2n−1 + 1
≡ tn + tn−1 + 2
≡ ´(n)
= ´(4n):

Define dk to be the first difference sequence of ck, i.e., dk = ck − ck−1, for k ≥ 0
(c−1 = 0). So d is the sequence

d0; d1; d2; d3; d4; : : : = 1; 2; 1; 1; 2; 2; 2; 1; 1; 2; 1; : : :

Note that from the definition of c in (??), the value of dk is either 1 or 2. Write
the Thue-Morse sequence in term of its blocks

t = 011010011 : : : = 0d′
01d′

10d′
21d′

3 : : :

defining a sequence d′
k. It is this sequence that is related to our original one via

the difference operator.

Theorem 4 For all k ≥ 0 we have dk = d′
k.

Proof. Since both sequences consist of 1’s and 2’s, we need only verify that the
1’s appear in the same places in both. It will be convenient to let c′

k =
∑

i≤k d′
i.

dk+1 = 1 ⇔ ´(ck + 1) = 1 (definitions)
⇔ ´(c′

k + 1) = 1 (induction)
⇔ tc′

k+1 + tc′
k

≡ 1 (Lemma ??)
⇔ tc′

k+1 6= tc′
k

(clear)
⇔ d′

k+1 = 1 (definitions):

Brlek [?] used the sequence d in calculating the number of factors of t of given
length. The paper of de Luca and Varricchio [?] attacks the same problem in a
different way.

Now if n ∈ c then we will consider its rank, r(n), which is the function satisfying
cr(n) = n. Note that r(n) is not defined for all positive integers n. In order to obtain
a formula for r(n), we will need a definition. Let the base 4 expansion of n be

n =
∑

i≥0
†i4i
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with the †i ∈ {0; 1; 2; 3} for all i. Define a function s by

s(n) =
∑

i

s(†i) where s(0) = s(3) = 0; s(1) = −1; s(2) = 1:

In other words, s(n) is the opposite of the sum of the base 4 digits of n, each of
them being reduced mod 3.

Theorem 5 If n ∈ c then

r(n) = (2n + 1 + s(2n + 1))=3 − 1:

Proof. The proof is an induction breaking up into three cases

1. n = 22i(2j + 1)

2. n = 22i(2j + 1) − 1

3. n = 22i−1(2j + 1) − 1

where i > 0 and j ≥ 0. (We do not need to consider the case n = 22i−1(2j + 1)
because these integers are not in our sequence.) The arguments are similar, so we
will only do the first case. By Proposition ?? we have n + 1 ∈ c. So we need only
show that r′(n + 1) = r′(n) + 1 where r′(n) is the right side of the equation in
the statement of the theorem. Now n is a multiple of 4, so the digits (base 4) of
2n + 1 and and 2n + 3 are identical except for the units digits which are 1 and 3,
respectively. Thus

r′(n + 1) = (2n + 3 + s(2n + 3))=3 − 1
= (2n + 3 + s(2n + 1) + s(3) − s(1))=3 − 1
= (2n + 1 + s(2n + 1))=3
= r′(n) + 1:

As straightforward corollaries we have the next two results.

Corollary 6 If n ∈ c then

r(n) = 2n=3 + O(log n)

and r(n) takes the value (2n)=3 infinitely often.

Corollary 7 For any nonnegative integer k

ck = 3k=2 + O(log k)

and ck = 3k=2 infinitely often.
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We shall now prove the generating function (??). First we note a property of
the exponents that is a simple consequence of their definition (??).

Lemma 8 Let fk =
∑

j≤k ej. Then

fk =





ek+1 − 1 if k is even
ek+1 if k is odd.

Also, it is convenient to cancel the denominator of the product into the numerator
to obtain the following equivalent statement.

Theorem 9 The generating function for c is

∑

k≥0

ckx
k =

1
1 − x

∏

j≥1
(1 + xej ):

Proof. It suffices to show that if k ≥ 0 then

gk(x) =
1

1 − x
(1 + x1)(1 + x1)(1 + x3) · · · (1 + xek)

is the generating function for the sequence

1; 3; 4; 5; 7; : : : ; cfk
; 2k; 2k; 2k; : : :

with cfk
= 2k −1. The proof is an induction, breaking up into two parts depending

on the parity of k. We will do the case where k is odd. (Even k is similar.) Now,
by Lemma ??, gk(x)(1 − xek+1) is the generating function for the sequence

1; 3; : : : ; cfk
; 2k + 1; 2k + 3; : : : ; 2k + cfk

;2k+1; 2k+1; : : :

Using Proposition ?? and the fact that k is odd, we see that 2k + 1 = cfk+1 and
2k + cfk

= 2k+1 − 1 = cfk+1. So we want to show that

cfk+1; cfk+2; : : : ; cfk+1 = 2k + c1; 2k + c2; : : : ; 2k + cfk
:

But if n < 2k, then the highest power of 2 dividing n is equal to the highest power
dividing 2k + n. Thus, by Proposition ?? again, n ∈ c if and only if 2k + n ∈ c.
This gives us the desired equality of the two sequences.

One possible generalization of c is the sequence c(fi) defined by n ∈ c(fi) if and
only if fin =∈ c(fi). Thus c is the special case fi = 2.

The following observation is a direct consequence of our definitions.
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Proposition 10 If ´(fi)(n) is the characteristic function of c(fi), then the sequence
(´(fi)(n)) is the unique fixed point of the morphism

1 → 1fi−10
0 → 1fi−11

which begins with 1.

One can also see that c(fi) satisfies analogs of many of our previous theorems.
For example, the following result is a generalization of Theorem ?? and has an
analogous proof.

Theorem 11 The generating function for c(fi) is

1
1 − x

∏

j≥1

1 − xfiej

1 − xej
:
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