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Abstract

Let a be a vector of real numbers. By an integer relation for a we

mean a non-zero integer vector c such that ca
T
= 0. We discuss the

algorithms for �nding such integer relations from the user's point of

view, by presenting examples of their applications and by reviewing

the available software implementations.

1 Introduction

Integer relation algorithms are core tools for computer-assisted mathematics.
Their main purpose is the \reverse engineering" of real numbers in the sense
that they help to recover a formula that evaluates to a given real number.

This paper is written from our perspective as frequent users of integer
relation algorithms, mainly by presenting research that we have done recently.
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The background of the algorithms is described only to the extent to which
average users would like to be able to modify integer relation code available to
them. Those who want to learn more about the theory of these algorithms,
including all proofs and complexity analyses, are referred to the excellent
survey [23].

Two types of integer relation algorithms and certain general applications
of them are introduced in Section 2. Examples of more speci�c applications
are discussed in detail in Section 3. Implementations available to us at the
present time are briey surveyed in Section 4.

1.1 Integer Relations

Let a 2 Rn be a given vector. We say that the vector c 2 Zn is an integer

relation for a if
nX
i=1

ciai = 0 (1)

with at least one ci di�erent from zero. It is the purpose of integer relation

algorithms to search for a non-zero vector c satisfying (1), possibly with
a certain level of con�dence.

Of course, a numerical discovery of a relation by a computer does not
in general constitute a proof of this relation; one of the reasons being that
the computer operates on rational approximations of numbers that in many
applications are likely to be transcendental. In many cases, however, the re-
lations we �rst discovered numerically subsequently received rigorous mathe-
matical proofs. Moreover, many complicated relations probably would never
have been dreamed of without the assistance of the computer. In Section 3
we show examples of such phenomena.

1.2 An Example

As an introductory example, let us consider the de�nite integral

V =

Z 1

0

p
x (lnx)5

(1� x)5
dx: (2)

Some computer algebra systems are able to evaluate V in a closed form while
others are not. Most of these systems will nevertheless yield a numerical
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approximation to V to a few dozens of decimal digits very quickly; this value
is

V � �16:6994737192290704961872434007 � � �
to the precision of 30 decimal digits.

Suppose that we knew in advance that the closed form evaluation of V
was a rational linear combination of even powers of �. If moreover we knew
that K is the maximal power of � that possibly can enter the expression
for V , we could consider the integer relation problem (1) with a1 = V ,
a2; a3; : : : ; an = 1; �2; : : : ; �2(n�2), where the value of n is determined by
2(n� 2) = K.

In this \toy" example we can use any available implementation of the
integer relation algorithms to obtain a solution. For example, using an LLL-
based algorithm implemented in Maple, an initial trial for K = 10 (thus
n = 7) with all numerics performed at the precision of 30 decimal places
gives within two seconds an answer

(c1; c2; c3; c4; c5; c6; c7) = (24; 0; 120; 140;�15; 0; 0)

or in other words

V =
5

24
�2(3�4 � 28�2 � 24): (3)

We must have some reasonable idea about the form of the result sought
if we hope to keep an integer relation search within reasonable limits (Sec-
tion 1.3). In the case of the integral V , its closed form follows from the theory
presented in [24], which contains a general symbolic algorithm for a family of
de�nite integrals of the type (2). Indeed the example (4.8) of [24] is exactly
our equation (3).

Similarly, multiplicative relations can be sought by taking logarithms and
including logarithms of small primes, from which an eventual rational coef-
�cient can be composed. Such ideas are discussed in detail by Bailey and
Plou�e in [5].

1.3 Limits of the Search

Two limitations on the model of a relation that we may pursue are evident:
(i) the length of the vector a and (ii) the precision to which the entries
of the vector a are known. As a rule of thumb, if a has n entries and D

is the maximal number of digits among the entries of c, then (as an easy
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counting argument shows) we have to know all entries of the vector a to
the precision somewhat greater than nD digits and computations have to be
performed using at least this level of numeric precision, if we hope to be able
to distinguish between bogus and signi�cant relations c.

Since di�erent integer relation algorithms (and their implementations)
can di�er by as much as two orders of magnitude in their running times
on the same input, there are no globally valid limitations on n and D. In
Section 4 we include timings and the required precision for an example with
n = 31, D = 6 and running times ranging between dozens of seconds and
dozens of minutes for various implementations. The largest example that we
have run was with an input vector a of length 171, given with a precision
of 2000 decimal places; a total of 56 linearly independent integer relations
(with few digit coe�cients) were recovered in 7 days of CPU time on a DEC
Alpha station (Section 3.2).

2 Integer Relation Algorithms

We recommend [23] for a comprehensive survey of integer relation algorithms.
That paper also presents a unifying view of several types of algorithms that at
the �rst glance seem to be di�erent in nature. Since our paper is application
oriented, we restrict our brief presentation to the two types of algorithms for
which implementations are accessible to us (and which then are surveyed in
Section 4).

Since an implementation of the LLL (Lenstra, Lenstra, Lov�asz) algorithm
is available in almost any computer algebra system, we discuss the LLL-based
methods in more detail (Section 2.1) because it is conceivable that the reader
would like to play with the respective integer relation code. In the case of
the PSLQ algorithm, whose implementations are much more e�cient but
less directly available, we restrict ourselves to stating its most important
features (Section 2.2) and we refer the reader to appropriate sources for
a more technical discussion.

2.1 Lattice Basis Reduction Methods

By the length of the vector v 2 Qn we mean its Euclidean length, that is,

jvj = (
Pn

i=1 v
2
i )

1=2
.
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Suppose we have a set of k vectors B = fv(1); : : : ; v(k)g � Qn , linearly
independent over Q . By the lattice spanned by B we mean the set

L =

(
kX
i=1

riv
(i)
��� ri 2 Z

)
� Qn :

This lattice has dimension n and rank k. The set B is called a basis of the
lattice. The basis of course is not unique, and given a lattice, we may look
for bases with some distinguished properties.

The problem of �nding the shortest vector in a given lattice L is believed
to be NP-complete [23]. There are, however, approximate solution algorithms
for this problem that run in polynomial time, such as the famous LLL lattice
basis reduction algorithm [25] which, given a basis for a lattice L, �nds
a reduced basis for L that is entirely composed of vectors with length at most
2n�1 �l, where l is the length of the shortest vector in L and n is the dimension
of L.

Lattice basis reduction algorithms can be employed to search for integer
relations in the following way ([25], p. 535). Suppose that we are given
a vector of real numbers (a1; : : : ; an) and let (a01; : : : ; a

0
n) be a vector of their

rational approximations. Let us consider the lattice L spanned by the (n+1)-

dimensional vectors v(i) (1 � i � n) where v
(i)
j = �i;j (the Kronecker delta)

for 1 � i; j � n and v
(i)
n+1 = C � a0i for 1 � i � n, where C is a large constant.

Now, if w is a short vector in a reduced basis for L,

w = (w1; : : : ; wn; C

nX
i=1

wia
0
i);

then jPn
i=1wia

0
ij is small and thus (w1; : : : ; wn) is a good candidate for an

integer relation for the vector (a1; : : : ; an). Of course, with increasing C we
improve our chances of correctly determining which vectors in the reduced
basis correspond to an integer relation for (a1; : : : ; an), and which do not.

A technical detail is worth mentioning: Many software systems have LLL-
based routines that search for minimal polynomials (Section 2.3) but corre-
spondingly lack a general integer relation routine. It was the purpose of this
section to give the reader su�cient insight in the LLL-based integer relation
search so that (s)he can adapt the minimal polynomial routine as a general
integer relation routine.
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2.1.1 Rational Inputs

In the special case when the vector a = (a1; : : : ; an) consists entirely of ratio-
nal numbers and we are taking ai = a0i for all i, we of course know in advance
that the dimension of the lattice of integer relations for a is equal to n � 1
(assuming a non-zero). If C is taken su�ciently large, then upon completion
of the lattice reduction algorithm, all numbers jPn

i=1wia
0
ij = jPn

i=1wiaij
will be equal to 0 for any vector w in the reduced basis, since w1; w2; : : : ; wn

are integers and, by the de�nition of a reduced basis,

(2n � l)2 �
n+1X
i=1

w2
i � w2

n+1 = C2 �
 

nX
i=1

wia
0
i

!2

where l is the length of the shortest vector in the lattice under consideration.
In Section 3.3 we present an application of �nding integer relations for

integer input vectors.

2.2 The PSLQ Algorithm

The �rst integer relation algorithm working reliably on vectors of non-trivial
length was discovered by Ferguson and Forcade in 1977. After a number of
improvements, in 1991 a new algorithm, known as the PSLQ algorithm, was
developed by Ferguson [19]. More recently a much simpler formulation of
this algorithm was introduced [20]. The papers [19] and [20] are available on
David Bailey's WWW page at
http://science.nas.nasa.gov/Groups/AAA/db.webpage/dbailey.html

Because this algorithm employs a numerically stable matrix reduction
procedure, it is free from the numerical di�culties that plague other integer
relation algorithms. Furthermore, its stability allows for an e�cient imple-
mentation with lower run times on average than other algorithms currently
in use.

A distinguishing feature of the PSLQ algorithm is that, besides recover-
ing an integer relation (if one exists), it can also produce a negative (non-
existence) result of the form \if a relation exists, then its Euclidean norm
is greater than M (an explicit numerical bound)". One can show, on using
a working precision that is only slightly higher than that of the input data,
that these bound results obtained from computer runs are reliable. Results of
this type, supporting conjectures about transcendence of certain constants,
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are to be found in [2, 4]. (See also Section 2.3 on minimal polynomials.)
For example, Bailey and Ferguson [4] used PSLQ to establish, that if Eu-
ler's constant  satis�es an integer polynomial of degree 50 or less, then the
Euclidean norm of the coe�cients must exceed 7 � 1017.

In the context of these exclusion bounds it is important to realize that,
even for very \similar" numbers, the Euclidean norms of their relations can
di�er greatly. For example, if x satis�es an integer polynomial of degree d,
norm s and k is an integer, then kx satis�es an integer polynomial whose
norm may become as high as roughly jkjds. The lesson that we learn here is
that, if we can, we should \normalize" our input so that the resulting integer
relation is of low Euclidean norm.

2.3 Finding Minimal Polynomials

If � is a real number, then by de�nition � is algebraic exactly if, for some r,
the vector

(1; �; �2; : : : ; �r) (4)

has an integer relation. The integer coe�cient polynomial of lowest degree,
whose root � is, is determined uniquely up to a constant multiple; it is
called the minimal polynomial for �. Integer relation algorithms can be
employed to look for minimal polynomials in a straightforward way by simply
feeding them the vector (4) as their input. Some computer algebra systems
have an LLL-based procedure for �nding minimal polynomials but lack a
general procedure for �nding integral relations; based on the explanation in
Section 2.1 the reader should be able to convert those minimal polynomial
routines into general integral relation routines.

2.4 Basis Perturbation

Suppose that we want to �nd many short vectors in a given lattice L. One
situation where we may wish to do this is the case when we are given a vector
a that possesses more than one integer relation, and the lattice L is formed
by integral vectors c such that caT = 0. Short (simple) vectors from L are
usually easier to understand, hence we might wish to have a larger collection
of them.

Let SL(n;Z) be the special linear group of the n � n matrices over Z
with determinant equal to 1, where n is the dimension of the lattice L. If B
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is a basis for L, then for any M 2 SL(n;Z), the image M �B is also a basis
for L. By running the basis reduction algorithm on many di�erent bases of
L we increase our chances of �nding more short vectors of L. A method for
generating the matrices from SL(n;Z) with some degree of randomness is
needed here; in our computations we have chosen to use long products of
matrices of the form of the n�n identity matrix with an SL(2;Z) submatrix
inserted at the intersections of the i-th and j-th row and column, for two
randomly chosen i; j 2 f1; 2; : : : ; ng.

3 Applications

In Sections 3.1 through 3.3 we discuss in some detail examples in which we
have successfully applied integer relation algorithms. More applications are
then briey listed (with appropriate references) in Section 3.4.

3.1 Cubic Singular Values

An interesting test case for the application of integer relation methods to the
task of �nding minimal polynomials as in Section 2.3 arises in the setting of
modular or theta functions. [9], [18]. Consider

a := a(q) =
1X

m;n=�1

qm
2+mn+n2; b := b(q) =

1X
m;n=�1

!n�mqn
2+mn+m2

;

where ! = e2�i=3 and

c := c(q) =
1X

m;n=�1

q(n+1=3)
2+(n+1=3)(m+1=3)+(m+1=3)2 :

These three functions lie on the Fermat curve a3 = b3 + c3 and one has the
lovely parameterization of a hypergeometric function:

2F1(
1

3
;
2

3
; 1;

c3

a3
) = a:

If we set q := e�2�
p

N=3 it follows from the theory in [9], [18] that, for N
rational, sN := c

a
is an algebraic number (expressible by radicals). For a pos-

itive integer N , sN is called the N -th cubic singular value|in analogy to the
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classical case of the complete elliptic integral of the �rst kind and quadratic
singular values kN ([7], p. 139). While with more work it is possible to be
more explicit about the exact form of sN , it is interesting to ask what may
be determined entirely by our computational methods.

In terms of the classical theta functions

�3(q) :=
1X

n=�1

qn
2

�2(q) :=
1X

n=�1

q(n+
1

2
)
2

one has the following highly lacunary representations for a; b and c

a(q) = �3(q)�3(q
3) + �2(q)�2(q

3)

b(q) = (3a(q3)� a(q))=2 c(q) = (a(q1=3)� a(q))=2

which allows one to compute many hundreds or thousands of digits of sN
almost instantly.

This then provides a rather good test of the ability of a program to
determine the algebraic value at hand. For example:

s1 = 1=
3
p
2

s2 = 0:52710011025237060710 � � �= (1=2� 1=4
p
2)1=3

s3 = 0:36602540378443864697 � � �= (
p
3� 1)=2

s4 = 0:26625264629019611364 � � �= (1=2� 5=18
p
3)1=3:

From the �rst few cases, and in analogy with the classical (quadratic) case1,
we were led to look instead at

GN := (1=2� s3N)
2 or gN :=

3sN
1� s3N

(5)

for N � �1 or N � 0 mod 3 respectively. This has the e�ect of reducing the
degree of the polynomial sought signi�cantly and so made it practical|with
re�nements to PSLQ|to obtain the �rst 100 values of sN . Thus, we obtain
s14 = (1=2 � 1=250

p
14 � 99=500

p
6)1=3. In addition, suppose we compute

g14 to 100 places and then obtain the potential polynomial from, say, a 50
digit computation. If the putative root is then veri�ed to near full precision
we are almost certainly right.

1Where one distinguishes 4k2(1� k2) or (1� k2)=2k for N respectively odd or even.
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To extract the radical representation of sN for a given N , we compute PN ,
the minimal polynomial for GN or gN (depending on N mod 3). Then we try
factoring PN over di�erent quadratic number �elds until we get a factor which
is (essentially) of degree 4 or less, solve it in radicals and use a transformation
inverse to (5) to get sN in radical form. The least value of N for which this
approach does not seem to work is N = 53. Computing G53 to 200 places
and using 100 digits in Maple's `minpoly', we obtain

P53(x) := �1468655558161� 9100986507260x+ 23965205326688x2

+672242305831040x3 � 3033916937098496x4 + 3679773552653312x5

as a polynomial we hope satis�es P53(G53) = 0. We also verify that P53(G53) =
�1:9 � 10�185. Extra comfort is provided by `galois(P53(x))' which returns

+D5; 10; (25)(34); (12345)

telling us that the polynomial indeed has a solvable Galois group of order 10.
Now, Daniel Lazard has written Maple code which returns a radical for any
solvable quintic. The procedure, which works well on tame examples, returns
a radical with 7508 symbols. Kevin Hare at CECM has greatly simpli�ed
the radical expression to one with only 860 symbols which, as Maple can
now happily verify symbolically, solves P53 and which ultimately will become
something attractive.

Most reassuringly, our evaluations of sN can often be veri�ed via the
equation

J2(k3N) = J3(sN) (6)

which holds for any rational N . Here, k and s are as above, while

J2(x) =
4

27

(1� x2(1� x2))3

x4(1� x2)2

is Klein's absolute invariant ([7], p. 115) and

J3(x) =
1

64

(9� 8x3)3

x9(1� x3)

its cubic counterpart2.

2We note that J3(x) = f
�
2(1� x3)1=3

�
where f is the Belyi function of the tetrahedron,

see [26], p. 376.
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The identity (6) follows from Proposition 5.8 in [7], p. 185 (equation
(5.5.26)) and [8]. Using known values of k3N (see [7], pp. 139, 162 and many
other places) the corresponding sN can be veri�ed. Maple easily checks the
identity (6) symbolically using its `radnormal' procedure for N � 10; for
larger N the complexity of intermediate results becomes a limiting factor
and the computation requires human guidance. Still, after adequate e�ort
we were able to verify our value of s70 symbolically, using the evaluation of
k210 (see [7], p. 141) that Hardy celebrated as \one of the most striking of
Ramanujan's results." (See [22], p. 229.)

It is interesting to note that the sN values can be also veri�ed by a mixture
of symbolic and numerical computing. For example, using a Liouville type
bound on the minimal polynomials for k210 and our minpoly-guessed value
of s70 (let us call it S), we can prove that either (i) J2(k210) = J3(S) or
(ii) jJ2(k210) � J3(S)j > 10�6400. It takes just 9 minutes of CPU time on
an SGI workstation to prove numerically that (ii) cannot hold, again using
Maple. Thus, G70 =

735540276593

3996969003000
+

3413048639

222053833500

p
2
p
3

+
357407303

55513458375

p
3
p
5
p
7� 8992317139

1998484501500

p
2
p
5
p
7:

We have found similar proofs and bounds for other larger values of N , such
as 110 and 154.

3.2 Euler Sums

Euler sums (also called \multiple zeta functions" or \multiple harmonic
sums") are a useful generalization of the classical zeta function: For posi-
tive integers i1; i2; : : : ; ik we de�ne

�(i1; i2; : : : ; ik) :=
X

n1>n2>:::>nk>0

1

ni11 n
i2
2 � � �nikk

(7)

and we note that i1 > 1 is both necessary and su�cient condition for con-
vergence. Thence we get the mapping � : (N+)k ! R [ f1g. The integer
k is called the depth of the sum, and i1 + i2 + � � � + ik is called the weight

of the sum. The de�nition (7) can be extended to alternating sums. Euler
sums recently found very interesting interpretations in high energy physics
and knot theory.
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Euler sums satisfy many striking identities, of which �(2; 1) = �(3) is
the simplest one. (Let us remark that Euler himself suggested and partially
proved theorems about reducibility of depth 2 zetas to depth 1 zetas.) Recent
work on integral representations of Euler sums has led us to a fast algorithm
for their high precision evaluations [13], thus allowing us to thoroughly ex-
amine them using integer relation algorithms.

The example that we want to single out for presentation is motivated by
the identity conjectured by Zagier [27] and proved �rst by Broadhurst [13],
after extensive empirical work in [12]:

�(f3; 1gn) =
1

2n+ 1
�(f2g2n) (=

2�4n

(4n+ 2)!
)

where fsgn denotes the string s repeated n times. Let us mention in this
context that, in all known \non-decomposable" identities involving Euler
sums, all �-terms have the same weight. This fact of course is of great
importance for guided integer relation searches|as it dramatically reduces
the size of the search space.

Broadhurst and Lison�ek recently used Bailey's fast implementation of
the PSLQ algorithm (Section 4.3) to search for possible generalizations of
Zagier's identity. Soon it appeared that the values

Z(m1; m2; : : : ; m2n+1) := �(f2gm1
; 3; f2gm2

; 1; f2gm3
; 3; : : : ; 1; f2gm2n+1

)

participate in many such identities. We then started to form the PSLQ
input vectors from all Z values of �xed weight (2K, say) along with the
value �(f2gK); and were rewarded by detecting many identities, from which
we were able to infer general patterns, and conjecture (among many other
things) the following generalization of Zagier's identity [14]:

2nX
i=0

Z(CiS) = �(f2gM+2n) (8)

where S is a string of 2n+1 non-negative integers whose sum is M , and CiS

denotes the cyclic shift of S by i positions. Zagier's identity is a special case
of (8) with all entries of S being zeros.

The symmetric form of (8) highlighted that Zagier-type identities have
a lot of combinatorial content, and in the cases M = 0; 1 we were able to
reduce (8) to evaluation of certain combinatorial sums, yielding in this way
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combinatorial proofs [14] whose only analytic component is the classically
known representation of Euler sums as iterated integrals. In the cases M �
2 we do not have such proofs yet, but we have strong numerical evidence
supporting (8) in these cases also.

The (now partially proved) conjecture (8) would never have been iden-
ti�ed without extensive use of an integer relation algorithm. Not only did
we infer new identities as results of sophisticated PSLQ runs, but we even
received a di�erent perspective on the entire situation and new avenues and
proof styles opened up for us.

3.3 The Prouhet-Tarry-Escott Problem

The Prouhet-Tarry-Escott Problem (PTE Problem) is an old unsolved prob-
lem in number theory. Extensive accounts on it are available in [21] or [15].

In its most general setting the PTE Problem asks for two multisets of
integers (or, equivalently, of rational numbers) X = fx1; : : : ; xsg and Y =
fy1; : : : ; ysg such that

sX
i=1

xei =
sX

i=1

yei e = 1; 2; : : : ; s� 1: (9)

Of course the system (9) is satis�ed if X and Y are equal as multisets; such
solutions we call trivial. Also, if X; Y are multisets satisfying the system (9)
and f : t 7! at+b is a linear transformation with rational coe�cients, then the
multisets f(X); f(Y ) satisfy (9). We then say that X; Y and f(X); f(Y ) are
equivalent solutions. In what follows we consider only non-trivial solutions
up to equivalence.

Solutions to the PTE Problem are known only for s = 1; : : : ; 10, and
in all these cases (except s = 9) it is known that there are in�nitely many
non-equivalent solutions.

Due to its large underdeterminacy as a polynomial equation system, the
PTE Problem is often considered in its more restrictive, symmetric version.

For s odd, the symmetric version takes the form
sX

i=1

zei = 0 e = 1; 3; : : : ; s� 2: (10)

Clearly, if z1; : : : ; zs satisfy (10), then x1 = z1; : : : ; xs = zs and y1 = �z1; : : : ;
ys = �zs is a solution of (9). Such PTE solutions we call odd symmetric

solutions [15].
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In the case s = 9, only two solutions to the PTE Problem are known,
and they are both odd symmetric solutions. They are, up to equivalence,
generated by

fz1; : : : ; z9g = f�98;�82;�58;�34; 13; 16; 69; 75; 99g (11)

and
fz1; : : : ; z9g = f�169;�161;�119;�63; 8; 50; 132; 148; 174g: (12)

Since the entries of (11) and (12) are small integers, we of course expect that
there exist many relations for them with small integer coe�cients. There is,
however, one type of relations whose frequency is striking in the output of
an integer relation algorithm: it is

zi1 + zi2 + zi3 + zi4 = zj1 + zj2 + zj3 + zj4 + zj5 = 0 (13)

where fi1; i2; i3; i4g [ fj1; j2; j3; j4; j5g is a disjoint partition of f1; 2; : : : ; 9g.
(Recall from (10) that

P9

i=1 zi = 0. Thus (13) represents just one relation,
in spite of being written as two equations.) While there is one relation of the
form (13) for the vector (11), there are as many as four linearly independent
relations of the form (13) in the case of the vector (12), far more than would
be suggested by a simple counting argument: merely assuming that (12)
consisted of nine random integers that sum up to 0.

This �nding suggested forcibly that split relations of the type (13) are
a frequent feature of odd symmetric PTE solutions, and led us to check the
other odd symmetric solutions we knew for the presence of this phenomenon.
Interestingly, of the more than 230 odd symmetric solutions of size 7 that we
computed in several weeks of CPU time [16], more than 85% have a relation
analogous to (13), that is zi1 + zi2 + zi3 = zj1 + zj2 + zj3 + zj4 = 0. (Here,
analogously, the i and j index sets are a disjoint partition of f1; 2; : : : ; 7g.)

While we do not yet have a rigorous explanation for this phenomenon, we
have apparently discovered a new fact about the symmetric PTE solutions
that had not been noted previously in the literature.

3.4 More Examples

There is a growingly vast number of results in which discoveries by integer
relation algorithms played an important role. We briey list three more of
these. In all cases, developing the right model (i.e. the form of the relations
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to be searched for) was absolutely key, but the machine discovery of relations
holding in the model was an equally essential prerequisite to success.

1. Borwein and Bradley [10, 11] considered the well-known formula for
�(3), used by Ap�ery in his irrationality proof, and recalled that there are no
immediately analogous formulae for �(5); �(7); : : : . In other words, if there
are relatively prime integers p and q such that

�(5) =
p

q

1X
k=1

(�1)k+1
k5
�
2k

k

� ;

then q is astronomically large.
However, a less known formula for �(5) due to Koecher suggested general-

izations for �(7); �(9); : : :, with the coe�cients in these formulae determined
by an LLL integer relation algorithm. For example,

�(7) =
5

2

1X
k=1

(�1)k+1
k7
�
2k

k

� +
25

2

1X
k=1

(�1)k+1
k3
�
2k

k

� k�1X
j=1

1

j4
:

The authors were able|by �nding LLL based relations for n = 1; 2; : : : ; 10|
to encapsulate the formulae for �(4n+ 3) in a single conjectured generating
function [10, 11]: For any complex z, we have

1X
n=1

�(4n+ 3)z4n =
1X
k=1

1

k3(1� z4=k4)

=
5

2

1X
k=1

(�1)k�1
k3
�
2k

k

� 1

(1� z4=k4)

k�1Y
m=1

1 + 4z4=m4

1� z4=m4
: (14)

Borwein and Bradley found many reformulations of (14), including a �nite
sum:

nX
k=1

2n2

k2

Qn�1

i=1 (i
4 + 4k4)Qn

i=1; i6=k(k
4 � i4)

=

�
2n

n

�
:

This identity was subsequently proved by Almkvist and Granville [1], thus
�nishing the proof of (14) and giving a rapidly converging series for any
�(4n+ 3) where n is positive integer.

2. Bailey, Borwein and Plou�e [3] discovered a new series for � (and
for some other polylogarithmic constants) which allows one to compute hex-
adecimal digits of � without computing the previous digits. The algorithm
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needs very little memory, does not need multiple precision and the running
time grows only slightly faster than linearly in the order of the digit being
computed. The key formula, discovered using the PSLQ algorithm, is [3]

� =
1X
k=0

�
1

16

�k �
4

8k + 1
� 2

8k + 4
� 1

8k + 5
� 1

8k + 6

�
:

The authors knew that an algorithm would follow from such a formula and
spent several months hunting for one. In September 1997, Fabrice Bellard
[6] used a variant formula to compute 152 binary digits of �, starting at the
trillionth position (1012). This computation took 12 days on 20 workstations
working in parallel over the Internet.

3. The Catalan constant is de�ned by

G =
1X
k=0

(�1)k
(2k + 1)2

: (15)

Bradley [17] considered the following series for the Catalan constant, due to
Ramanujan (see [7], p. 386)

G =
�

8
log(2 +

p
3) +

3

8

1X
k=0

1

(2k + 1)2
�
2k

k

�
and showed that this series is a member of an entire family of expansions
accelerating (15). Another example of a series from this family is

G =
�

8
log

 
10 +

p
50� 22

p
5

10�
p
50� 22

p
5

!
+
5

8

1X
k=0

L(2k + 1)

(2k + 1)2
�
2k

k

� (16)

where L(n) are the Lucas numbers. At the heart of proving the general
formula for this family of series are certain transformations for log tangent
integrals, discovered by an LLL integer relation algorithm. For example, the
expansion (16) is proved using the transformation

2

Z �=4

0

log(tan �) d� = 5

Z 3�=20

0

log(tan �) d� � 5

Z �=20

0

log(tan �) d�:

In contrast to the original series, it is easy to hunt numerically for relations

between di�erent
R p

q
�

0 log(tan �) d�.
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4 Implementations

We briey mention some software implementations of integer relation algo-
rithms known to us (the list is by no means complete). We also report per-
formance results for these algorithms when they are used to �nd the minimal
polynomial of a speci�c algebraic number that we chose as a test case.

4.1 A Test Example

Consider A = 21=6+31=5. The advantage of picking a simple algebraic number
for our test is that we can easily precompute the minimal polynomial (using
resultants) and thus have a correctness check for the results coming from
integer relation algorithms.

The minimal polynomial for A is

M(x) = resy(y
6 � 2; (x� y)5 � 3)

= x30 � 18x25 � 10x24 + 135x20 � 7380x19 + 40x18 � 540x15

�135540x14 � 56160x13 � 80x12 + 1215x10 � 336420x9

+538380x8 � 43920x7 + 80x6 � 1458x5 � 102060x4 � 98280x3

�20520x2 � 1440x+ 697:

We have tested di�erent implementations of integer relation algorithms
by asking them to recover the polynomialM for di�erent input precisions at
which A was numerically speci�ed. In consecutive runs we were incrementing
the precision by 5 decimal digits. The results are summarized and compared
in Sections 4.2 through 4.4.

4.2 LLL-based Algorithms

An LLL-based minimal polynomial algorithm is found in most computer al-
gebra systems. We have received quite comparable results for the following
three systems. For all three systems the tests were performed on an R4600
SGI workstation running at 132 MHz. Maple and Mathematica are lead-
ing commercial computer algebra products. PARI-GP can be obtained by
anonymous ftp to megrez.math.u-bordeaux.fr.
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software precision time function
system needed needed used

Maple 5.5 235(310)� 27 min� minpoly

Mathematica 3.0 170 33.5 min NumberTheory`Recognize`

PARI-GP 1.39 175(265)� 27.5 min� lindep2

Comments:

� The notation d1(d2) means that the �rst correct result is received at the
precision of d1 decimal digits but a steady stream of correct results (when
incrementing the precision by 5 digits in one step) only starts at d2 digits.
In this case, the timing in the third column is for the run at the precision of
d1 digits.

4.3 The PSLQ Algorithm

software precision time
system needed needed

MPFUN (Fortran) 220 14 sec

The tests leading to this result were performed on a 125 MHz DEC Alpha
station, using Bailey's fast three-level implementation of PSLQ written in his
Fortran multiprecision arithmetic library MPFUN. Fortran sources for both
MPFUN and PSLQ are available on Bailey's WWW page (see Section 2.2).

4.4 The Comparison

A detailed comparison of these (and many other) implementations of integer
relation algorithms would require a much larger collection of experiments and
would be a topic for a paper on its own. From the limited data that we have
presented one can derive the following observations:

Numerical stability. PSLQ shows more stability, by having a clear-cut line
between precisions at which the relation is not found and those where the
relation is found. On the other hand, two of the three LLL-based algorithms
that we have tried out were quite unstable in this sense.

Running time. Our tests were carried out on two di�erent computers,
which nonetheless are comparable in speed and performance.
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Interestingly, theoretical results predict an asymptotically similar number
of arithmetic operations for both types of algorithms (in both cases n is the
dimension of the input vector):

� If B is a basis for the lattice L and b is the maximal length of vectors
in B, then the LLL algorithm will �nd a reduced basis for L using
O(n4 log b) arithmetic operations [25].

� If Ma is the minimum length among all existing integer relations for
a given vector a, then the PSLQ algorithm will �nd a relation for a
using O(n4 + n3 logMa) arithmetic operations [20].

The large di�erence between the timings observed in Sections 4.3 and 4.2
can be partially accounted for by the fact that Bailey's PSLQ implementation
is highly customized and compiled with a fast multiprecision library, whereas
the LLL-based methods are implemented in (mostly interpreted) general pur-
pose computer algebra systems. Another fact that apparently plays a great
role here is that the numerical stability of PSLQ admits an e�cient multi-
level implementation using a combination of double precision and multiple
precision arithmetic, at two or even three distinct levels of working precision.

Our general experience is that Bailey's PSLQ indeed runs much faster
than the LLL implementations, and we de�nitely recommend using PSLQ
for larger input vectors and/or higher numerical precision. For small cases,
the LLL-based implementations are su�cient and probably easier to use, as
they do not require installation of special software but rather come as parts
of widespread mathematical software packages.
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