
ar
X

iv
:1

00
4.

47
10

v1
 [

cs
.D

S]
 2

7
A

pr
 2

01
0

Modern Computer Arithmetic

Richard P. Brent and Paul Zimmermann

Version 0.5.1

http://arxiv.org/abs/1004.4710v1

Copyright c© 2003-2010 Richard P. Brent and Paul Zimmermann

This electronic version is distributed under the terms and conditions of
the Creative Commons license “Attribution-Noncommercial-No Derivative
Works 3.0”. You are free to copy, distribute and transmit this book under
the following conditions:

• Attribution. You must attribute the work in the manner specified
by the author or licensor (but not in any way that suggests that they
endorse you or your use of the work).

• Noncommercial. You may not use this work for commercial purposes.

• No Derivative Works. You may not alter, transform, or build upon
this work.

For any reuse or distribution, you must make clear to others the license terms
of this work. The best way to do this is with a link to the web page below.
Any of the above conditions can be waived if you get permission from the
copyright holder. Nothing in this license impairs or restricts the author’s
moral rights.

For more information about the license, visit
http://creativecommons.org/licenses/by-nc-nd/3.0/

http://creativecommons.org/licenses/by-nc-nd/3.0/

Contents

Contents iii

Preface ix

Acknowledgements xi

Notation xiii

1 Integer Arithmetic 1
1.1 Representation and Notations 1
1.2 Addition and Subtraction . 2
1.3 Multiplication . 3

1.3.1 Naive Multiplication 4
1.3.2 Karatsuba’s Algorithm 5
1.3.3 Toom-Cook Multiplication 7
1.3.4 Use of the Fast Fourier Transform (FFT) 8
1.3.5 Unbalanced Multiplication 9
1.3.6 Squaring . 12
1.3.7 Multiplication by a Constant 15

1.4 Division . 15
1.4.1 Naive Division . 16
1.4.2 Divisor Preconditioning 18
1.4.3 Divide and Conquer Division 19
1.4.4 Newton’s Method . 23
1.4.5 Exact Division . 23
1.4.6 Only Quotient or Remainder Wanted 24
1.4.7 Division by a Single Word 25
1.4.8 Hensel’s Division . 26

iii

iv Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

1.5 Roots . 27
1.5.1 Square Root . 27
1.5.2 k-th Root . 29
1.5.3 Exact Root . 30

1.6 Greatest Common Divisor . 31
1.6.1 Naive GCD . 32
1.6.2 Extended GCD . 35
1.6.3 Half Binary GCD, Divide and Conquer GCD 36

1.7 Base Conversion . 40
1.7.1 Quadratic Algorithms 41
1.7.2 Subquadratic Algorithms 41

1.8 Exercises . 43
1.9 Notes and References . 48

2 Modular Arithmetic and the FFT 51
2.1 Representation . 51

2.1.1 Classical Representation 51
2.1.2 Montgomery’s Form 52
2.1.3 Residue Number Systems 53
2.1.4 MSB vs LSB Algorithms 53
2.1.5 Link with Polynomials 53

2.2 Modular Addition and Subtraction 54
2.3 The Fourier Transform . 54

2.3.1 Theoretical Setting . 55
2.3.2 The Fast Fourier Transform 56
2.3.3 The Schönhage-Strassen Algorithm 60

2.4 Modular Multiplication . 63
2.4.1 Barrett’s Algorithm . 63
2.4.2 Montgomery’s Multiplication 65
2.4.3 McLaughlin’s Algorithm 68
2.4.4 Special Moduli . 70

2.5 Modular Division and Inversion 70
2.5.1 Several Inversions at Once 72

2.6 Modular Exponentiation . 74
2.6.1 Binary Exponentiation 75
2.6.2 Exponentiation With a Larger Base 76
2.6.3 Sliding Window and Redundant Representation 77

2.7 Chinese Remainder Theorem 79

Modern Computer Arithmetic v

2.8 Exercises . 81
2.9 Notes and References . 83

3 Floating-Point Arithmetic 85
3.1 Representation . 85

3.1.1 Radix Choice . 87
3.1.2 Exponent Range . 87
3.1.3 Special Values . 88
3.1.4 Subnormal Numbers 88
3.1.5 Encoding . 90
3.1.6 Precision: Local, Global, Operation, Operand 91
3.1.7 Link to Integers . 92
3.1.8 Ziv’s Algorithm and Error Analysis 93
3.1.9 Rounding . 94
3.1.10 Strategies . 98

3.2 Addition, Subtraction, Comparison 99
3.2.1 Floating-Point Addition 99
3.2.2 Floating-Point Subtraction 101

3.3 Multiplication . 103
3.3.1 Integer Multiplication via Complex FFT 107
3.3.2 The Middle Product 109

3.4 Reciprocal and Division . 110
3.4.1 Reciprocal . 111
3.4.2 Division . 115

3.5 Square Root . 120
3.5.1 Reciprocal Square Root 121

3.6 Conversion . 124
3.6.1 Floating-Point Output 124
3.6.2 Floating-Point Input 127

3.7 Exercises . 128
3.8 Notes and References . 130

4 Elementary and Special Function Evaluation 135
4.1 Introduction . 135
4.2 Newton’s Method . 136

4.2.1 Newton’s Method for Inverse Roots 138
4.2.2 Newton’s Method for Reciprocals 138
4.2.3 Newton’s Method for (Reciprocal) Square Roots 139

vi Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

4.2.4 Newton’s Method for Formal Power Series 140
4.2.5 Newton’s Method for Functional Inverses 141
4.2.6 Higher Order Newton-like Methods 142

4.3 Argument Reduction . 143
4.3.1 Repeated Use of a Doubling Formula 145
4.3.2 Loss of Precision . 145
4.3.3 Guard Digits . 146
4.3.4 Doubling versus Tripling 147

4.4 Power Series . 148
4.4.1 Direct Power Series Evaluation 152
4.4.2 Power Series With Argument Reduction 152
4.4.3 Rectangular Series Splitting 153

4.5 Asymptotic Expansions . 157
4.6 Continued Fractions . 163
4.7 Recurrence Relations . 165

4.7.1 Evaluation of Bessel Functions 166
4.7.2 Evaluation of Bernoulli and Tangent numbers 167

4.8 Arithmetic-Geometric Mean 171
4.8.1 Elliptic Integrals . 172
4.8.2 First AGM Algorithm for the Logarithm 173
4.8.3 Theta Functions . 174
4.8.4 Second AGM Algorithm for the Logarithm 175
4.8.5 The Complex AGM . 177

4.9 Binary Splitting . 178
4.9.1 A Binary Splitting Algorithm for sin, cos 180
4.9.2 The Bit-Burst Algorithm 181

4.10 Contour Integration . 184
4.11 Exercises . 185
4.12 Notes and References . 194

5 Implementations and Pointers 201
5.1 Software Tools . 201

5.1.1 CLN . 201
5.1.2 GNU MP (GMP) . 202
5.1.3 MPFQ . 203
5.1.4 MPFR . 203
5.1.5 Other Multiple-Precision Packages 203
5.1.6 Computational Algebra Packages 204

Modern Computer Arithmetic vii

5.2 Mailing Lists . 206
5.2.1 The BNIS Mailing List 206
5.2.2 The GMP Lists . 206
5.2.3 The MPFR List . 206

5.3 On-line Documents . 206

Bibliography 209

Index 230

Summary of Complexities 247

Preface

This is a book about algorithms for performing arithmetic, and their imple-
mentation on modern computers. We are concerned with software more than
hardware — we do not cover computer architecture or the design of computer
hardware since good books are already available on these topics. Instead we
focus on algorithms for efficiently performing arithmetic operations such as
addition, multiplication and division, and their connections to topics such as
modular arithmetic, greatest common divisors, the Fast Fourier Transform
(FFT), and the computation of special functions.

The algorithms that we present are mainly intended for arbitrary-precision
arithmetic. That is, they are not limited by the computer wordsize of 32 or
64 bits, only by the memory and time available for the computation. We
consider both integer and real (floating-point) computations.

The book is divided into four main chapters, plus one short chapter (es-
sentially an appendix). Chapter 1 covers integer arithmetic. This has, of
course, been considered in many other books and papers. However, there
has been much recent progress, inspired in part by the application to public
key cryptography, so most of the published books are now partly out of date
or incomplete. Our aim is to present the latest developments in a concise
manner. At the same time, we provide a self-contained introduction for the
reader who is not an expert in the field.

Chapter 2 is concerned with modular arithmetic and the FFT, and their
applications to computer arithmetic. We consider different number represen-
tations, fast algorithms for multiplication, division and exponentiation, and
the use of the Chinese Remainder Theorem (CRT).

Chapter 3 covers floating-point arithmetic. Our concern is with high-
precision floating-point arithmetic, implemented in software if the precision
provided by the hardware (typically IEEE standard 53-bit significand) is in-
adequate. The algorithms described in this chapter focus on correct rounding,
extending the IEEE standard to arbitrary precision.

x Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Chapter 4 deals with the computation, to arbitrary precision, of functions
such as sqrt, exp, ln, sin, cos, and more generally functions defined by power
series or continued fractions. Of course, the computation of special functions
is a huge topic so we have had to be selective. In particular, we have con-
centrated on methods that are efficient and suitable for arbitrary-precision
computations.

The last chapter contains pointers to implementations, useful web sites,
mailing lists, and so on. Finally, at the end there is a one-page Summary of
Complexities which should be a useful aide-mémoire.

The chapters are fairly self-contained, so it is possible to read them out
of order. For example, Chapter 4 could be read before Chapters 1–3, and
Chapter 5 can be consulted at any time. Some topics, such as Newton’s
method, appear in different guises in several chapters. Cross-references are
given where appropriate.

For details that are omitted we give pointers in the Notes and References
sections of each chapter, as well as in the bibliography. We have tried, as far
as possible, to keep the main text uncluttered by footnotes and references,
so most references are given in the Notes and References sections.

The book is intended for anyone interested in the design and implemen-
tation of efficient algorithms for computer arithmetic, and more generally
efficient numerical algorithms. We did our best to present algorithms that
are ready to implement in your favorite language, while keeping a high-level
description and not getting too involved in low-level or machine-dependent
details. An alphabetical list of algorithms can be found in the index.

Although the book is not specifically intended as a textbook, it could be
used in a graduate course in mathematics or computer science, and for this
reason, as well as to cover topics that could not be discussed at length in the
text, we have included exercises at the end of each chapter. The exercises
vary considerably in difficulty, from easy to small research projects, but we
have not attempted to assign them a numerical rating. For solutions to the
exercises, please contact the authors.

We welcome comments and corrections. Please send them to either of the
authors.

Richard Brent and Paul Zimmermann
MCA@rpbrent.com

Paul.Zimmermann@inria.fr

Canberra and Nancy, February 2010

Acknowledgements

We thank the French National Institute for Research in Computer Science
and Control (INRIA), the Australian National University (ANU), and the
Australian Research Council (ARC), for their support. The book could not
have been written without the contributions of many friends and colleagues,
too numerous to mention here, but acknowledged in the text and in the Notes
and References sections at the end of each chapter.

We also thank those who have sent us comments on and corrections to
earlier versions of this book: Jörg Arndt, Marco Bodrato, Wolfgang Ehrhardt
(with special thanks), Steven Galbraith, Torbjörn Granlund, Guillaume Han-
rot, Marc Mezzarobba, Jean-Michel Muller, Denis Roegel, Wolfgang Schmid,
Arnold Schönhage, Sidi Mohamed Sedjelmaci, Emmanuel Thomé, and Mark
Wezelenburg. Two anonymous reviewers provided very helpful suggestions.

TheMathematics Genealogy Project (http://www.genealogy.ams.org/)
and Don Knuth’s The Art of Computer Programming [143] were useful re-
sources for details of entries in the index.

We also thank the authors of the LATEX program, which allowed us to
produce this book, the authors of the gnuplot program, and the authors of
the GNU MP library, which helped us to illustrate several algorithms with
concrete figures.

Finally, we acknowledge the contribution of Erin Brent, who first sug-
gested writing the book; and thank our wives, Judy-anne and Marie, for
their patience and encouragement.

http://www.genealogy.ams.org/

Notation

C set of complex numbers

Ĉ set of extended complex numbers C ∪ {∞}
N set of natural numbers (nonnegative integers)
N∗ set of positive integers N\{0}
Q set of rational numbers
R set of real numbers
Z set of integers
Z/nZ ring of residues modulo n
Cn set of (real or complex) functions with n continuous derivatives

in the region of interest

ℜ(z) real part of a complex number z
ℑ(z) imaginary part of a complex number z
z̄ conjugate of a complex number z
|z| Euclidean norm of a complex number z,

or absolute value of a scalar z

Bn Bernoulli numbers,
∑

n≥0Bnz
n/n! = z/(ez − 1)

Cn scaled Bernoulli numbers, Cn = B2n/(2n)! ,
∑

Cnz
2n = (z/2)/ tanh(z/2)

Tn tangent numbers,
∑

Tnz
2n−1/(2n − 1)! = tan z

Hn harmonic number
∑n

j=1 1/j (0 if n ≤ 0)

(
n
k

)
binomial coefficient “n choose k” = n!/(k! (n − k)!) (0 if k < 0 or k > n)

xiv Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

β “word” base (usually 232 or 264) or “radix” (floating-point)
n “precision”: number of base β digits in an integer or in a

floating-point significand, or a free variable
ε “machine precision” β1−n/2 or (in complexity bounds)

an arbitrarily small positive constant
η smallest positive subnormal number

◦(x), ◦n(x) rounding of real number x in precision n (Definition 3.1.1)
ulp(x) for a floating-point number x, one unit in the last place

M(n) time to multiply n-bit integers, or polynomials of
degree n− 1, depending on the context

∼M(n) a function f(n) such that f(n)/M(n)→ 1 as n→∞
(we sometimes lazily omit the “∼” if the meaning is clear)

M(m,n) time to multiply an m-bit integer by an n-bit integer
D(n) time to divide a 2n-bit integer by an n-bit integer,

giving quotient and remainder
D(m,n) time to divide an m-bit integer by an n-bit integer,

giving quotient and remainder

a|b a is a divisor of b, that is b = ka for some k ∈ Z

a = b mod m modular equality, m|(a− b)
q ← a div b assignment of integer quotient to q (0 ≤ a− qb < b)
r← a mod b assignment of integer remainder to r (0 ≤ r = a− qb < b)
(a, b) greatest common divisor of a and b
(
a
b

)
or (a|b) Jacobi symbol (b odd and positive)

iff if and only if
i ∧ j bitwise and of integers i and j,

or logical and of two Boolean expressions
i ∨ j bitwise or of integers i and j,

or logical or of two Boolean expressions
i⊕ j bitwise exclusive-or of integers i and j
i≪ k integer i multiplied by 2k

i≫ k quotient of division of integer i by 2k

a · b, a× b product of scalars a, b
a ∗ b cyclic convolution of vectors a, b

ν(n) 2-valuation: largest k such that 2k divides n (ν(0) =∞)
σ(e) length of the shortest addition chain to compute e
φ(n) Euler’s totient function, #{m : 0 < m ≤ n ∧ (m,n) = 1}

Modern Computer Arithmetic xv

deg(A) for a polynomial A, the degree of A
ord(A) for a power series A =

∑
j ajz

j ,

ord(A) = min{j : aj 6= 0} (ord(0) = +∞)

exp(x) or ex exponential function
ln(x) natural logarithm
logb(x) base-b logarithm ln(x)/ ln(b)
lg(x) base-2 logarithm ln(x)/ ln(2) = log2(x)

log(x) logarithm to any fixed base

logk(x) (log x)k

⌈x⌉ ceiling function, min{n ∈ Z : n ≥ x}
⌊x⌋ floor function, max{n ∈ Z : n ≤ x}
⌊x⌉ nearest integer function, ⌊x+ 1/2⌋

sign(n) +1 if n > 0, −1 if n < 0, and 0 if n = 0
nbits(n) ⌊lg(n)⌋+ 1 if n > 0, 0 if n = 0

[a, b] closed interval {x ∈ R : a ≤ x ≤ b} (empty if a > b)
(a, b) open interval {x ∈ R : a < x < b} (empty if a ≥ b)
[a, b), (a, b] half-open intervals, a ≤ x < b, a < x ≤ b respectively

t[a, b] or [a, b]t column vector

(
a
b

)

[a, b; c, d] 2× 2 matrix

(
a b
c d

)

âj element of the (forward) Fourier transform of vector a
ãj element of the backward Fourier transform of vector a

f(n) = O(g(n)) ∃c, n0 such that |f(n)| ≤ cg(n) for all n ≥ n0

f(n) = Ω(g(n)) ∃c > 0, n0 such that |f(n)| ≥ cg(n) for all n ≥ n0

f(n) = Θ(g(n)) f(n) = O(g(n)) and g(n) = O(f(n))
f(n) ∼ g(n) f(n)/g(n)→ 1 as n→∞
f(n) = o(g(n)) f(n)/g(n)→ 0 as n→∞
f(n)≪ g(n) f(n) = O(g(n))
f(n)≫ g(n) g(n)≪ f(n)

f(x) ∼∑n
0 aj/x

j f(x)−∑n
0 aj/x

j = o(1/xn) as x→ +∞

xvi Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

123 456 789 123456789 (for large integers, we may use a space after
every third digit)

xxx.yyyρ a number xxx.yyy written in base ρ;
for example, the decimal number 3.25 is 11.012 in binary

a
b+

c
d+

e
f+ · · · continued fraction a/(b + c/(d + e/(f + · · ·)))

|A| determinant of a matrix A, e.g.

∣∣∣∣
a b
c d

∣∣∣∣ = ad− bc

PV
∫ b
a f(x) dx Cauchy principal value integral, defined by a limit

if f has a singularity in (a, b)

s || t concatenation of strings s and t

⊲ <text> comment in an algorithm

end of a proof

Chapter 1

Integer Arithmetic

In this chapter our main topic is integer arithmetic. However,
we shall see that many algorithms for polynomial arithmetic are
similar to the corresponding algorithms for integer arithmetic,
but simpler due to the lack of carries in polynomial arithmetic.
Consider for example addition: the sum of two polynomials of
degree n always has degree at most n, whereas the sum of two
n-digit integers may have n + 1 digits. Thus we often describe
algorithms for polynomials as an aid to understanding the corre-
sponding algorithms for integers.

1.1 Representation and Notations

We consider in this chapter algorithms working on integers. We distinguish
between the logical — or mathematical — representation of an integer, and
its physical representation on a computer. Our algorithms are intended for
“large” integers — they are not restricted to integers that can be represented
in a single computer word.

Several physical representations are possible. We consider here only the
most common one, namely a dense representation in a fixed base. Choose
an integral base β > 1. (In case of ambiguity, β will be called the internal
base.) A positive integer A is represented by the length n and the digits ai
of its base β expansion:

A = an−1β
n−1 + · · ·+ a1β + a0,

where 0 ≤ ai ≤ β − 1, and an−1 is sometimes assumed to be non-zero.

2 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Since the base β is usually fixed in a given program, only the length n
and the integers (ai)0≤i<n need to be stored. Some common choices for β
are 232 on a 32-bit computer, or 264 on a 64-bit machine; other possible
choices are respectively 109 and 1019 for a decimal representation, or 253

when using double-precision floating-point registers. Most algorithms given
in this chapter work in any base; the exceptions are explicitly mentioned.

We assume that the sign is stored separately from the absolute value.
This is known as the “sign-magnitude” representation. Zero is an important
special case; to simplify the algorithms we assume that n = 0 if A = 0, and
we usually assume that this case is treated separately.

Except when explicitly mentioned, we assume that all operations are off-
line, i.e., all inputs (resp. outputs) are completely known at the beginning
(resp. end) of the algorithm. Different models include lazy and relaxed algo-
rithms, and are discussed in the Notes and References (§1.9).

1.2 Addition and Subtraction

As an explanatory example, here is an algorithm for integer addition. In the
algorithm, d is a carry bit.

Our algorithms are given in a language which mixes mathematical nota-
tion and syntax similar to that found in many high-level computer languages.
It should be straightforward to translate into a language such as C. Note that
“:=” indicates a definition, and “←” indicates assignment. Line numbers are
included if we need to refer to individual lines in the description or analysis
of the algorithm.

Algorithm 1.1 IntegerAddition

Input: A =
∑n−1

0 aiβ
i, B =

∑n−1
0 biβ

i, carry-in 0 ≤ din ≤ 1
Output: C :=

∑n−1
0 ciβ

i and 0 ≤ d ≤ 1 such that A+B + din = dβn + C
1: d← din
2: for i from 0 to n− 1 do
3: s← ai + bi + d
4: (d, ci)← (s div β, s mod β)

5: return C, d.

Let T be the number of different values taken by the data type represent-
ing the coefficients ai, bi. (Clearly β ≤ T but equality does not necessarily

Modern Computer Arithmetic, §1.3 3

hold, e.g., β = 109 and T = 232.) At step 3, the value of s can be as large
as 2β − 1, which is not representable if β = T . Several workarounds are
possible: either use a machine instruction that gives the possible carry of
ai + bi; or use the fact that, if a carry occurs in ai + bi, then the computed
sum — if performed modulo T — equals t := ai+bi−T < ai; thus comparing
t and ai will determine if a carry occurred. A third solution is to keep a bit
in reserve, taking β ≤ T/2.

The subtraction code is very similar. Step 3 simply becomes s ← ai −
bi + d, where d ∈ {−1, 0} is the borrow of the subtraction, and −β ≤ s < β.
The other steps are unchanged, with the invariant A−B + din = dβn + C.

We use the arithmetic complexity model, where cost is measured by the
number of machine instructions performed, or equivalently (up to a constant
factor) the time on a single processor.

Addition and subtraction of n-word integers cost O(n), which is negligible
compared to the multiplication cost. However, it is worth trying to reduce
the constant factor implicit in this O(n) cost. We shall see in §1.3 that
“fast” multiplication algorithms are obtained by replacing multiplications by
additions (usually more additions than the multiplications that they replace).
Thus, the faster the additions are, the smaller will be the thresholds for
changing over to the “fast” algorithms.

1.3 Multiplication

A nice application of large integer multiplication is the Kronecker-Schönhage
trick , also called segmentation or substitution by some authors. Assume
we want to multiply two polynomials A(x) and B(x) with non-negative in-
teger coefficients (see Exercise 1.1 for negative coefficients). Assume both
polynomials have degree less than n, and coefficients are bounded by ρ.
Now take a power X = βk > nρ2 of the base β, and multiply the inte-
gers a = A(X) and b = B(X) obtained by evaluating A and B at x = X .
If C(x) = A(x)B(x) =

∑
cix

i, we clearly have C(X) =
∑

ciX
i. Now since

the ci are bounded by nρ2 < X , the coefficients ci can be retrieved by simply
“reading” blocks of k words in C(X). Assume for example that we want to
compute

(6x5 + 6x4 + 4x3 + 9x2 + x+ 3)(7x4 + x3 + 2x2 + x+ 7),

4 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

with degree less than n = 6, and coefficients bounded by ρ = 9. We can take
X = 103 > nρ2, and perform the integer multiplication:

6 006 004 009 001 003× 7 001 002 001 007

= 42 048 046 085 072 086 042 070 010 021,

from which we can read off the product

42x9 + 48x8 + 46x7 + 85x6 + 72x5 + 86x4 + 42x3 + 70x2 + 10x+ 21.

Conversely, suppose we want to multiply two integers a =
∑

0≤i<n aiβ
i

and b =
∑

0≤j<n bjβ
j. Multiply the polynomials A(x) =

∑
0≤i<n aix

i and

B(x) =
∑

0≤j<n bjx
j , obtaining a polynomial C(x), then evaluate C(x) at

x = β to obtain ab. Note that the coefficients of C(x) may be larger than β,
in fact they may be up to about nβ2. For example, with a = 123, b = 456,
and β = 10, we obtain A(x) = x2+2x+3, B(x) = 4x2+5x+6, with product
C(x) = 4x4 + 13x3 + 28x2 + 27x+ 18, and C(10) = 56088. These examples
demonstrate the analogy between operations on polynomials and integers,
and also show the limits of the analogy.

A common and very useful notation is to letM(n) denote the time to mul-
tiply n-bit integers, or polynomials of degree n−1, depending on the context.
In the polynomial case, we assume that the cost of multiplying coefficients is
constant; this is known as the arithmetic complexity model, whereas the bit
complexity model also takes into account the cost of multiplying coefficients,
and thus their bit-size.

1.3.1 Naive Multiplication

Algorithm 1.2 BasecaseMultiply

Input: A =
∑m−1

0 aiβ
i, B =

∑n−1
0 bjβ

j

Output: C = AB :=
∑m+n−1

0 ckβ
k

1: C ← A · b0
2: for j from 1 to n− 1 do
3: C ← C + βj(A · bj)
4: return C.

Modern Computer Arithmetic, §1.3 5

Theorem 1.3.1 Algorithm BasecaseMultiply computes the product AB
correctly, and uses Θ(mn) word operations.

The multiplication by βj at step 3 is trivial with the chosen dense represen-
tation: it simply requires shifting by j words towards the most significant
words. The main operation in Algorithm BasecaseMultiply is the compu-
tation of A·bj and its accumulation into C at step 3. Since all fast algorithms
rely on multiplication, the most important operation to optimize in multiple-
precision software is thus the multiplication of an array of m words by one
word, with accumulation of the result in another array of m+ 1 words.

We sometimes call Algorithm BasecaseMultiply schoolbook multiplica-
tion since it is close to the “long multiplication” algorithm that used to be
taught at school.

Since multiplication with accumulation usually makes extensive use of the
pipeline, it is best to give it arrays that are as long as possible, which means
that A rather than B should be the operand of larger size (i.e., m ≥ n).

1.3.2 Karatsuba’s Algorithm

Karatsuba’s algorithm is a “divide and conquer” algorithm for multiplication
of integers (or polynomials). The idea is to reduce a multiplication of length
n to three multiplications of length n/2, plus some overhead that costs O(n).

In the following, n0 ≥ 2 denotes the threshold between naive multiplica-
tion and Karatsuba’s algorithm, which is used for n0-word and larger inputs.
The optimal “Karatsuba threshold” n0 can vary from about 10 to about 100
words, depending on the processor and on the relative cost of multiplication
and addition (see Exercise 1.6).

Theorem 1.3.2 Algorithm KaratsubaMultiply computes the product AB
correctly, using K(n) = O(nα) word multiplications, with α = lg 3 ≈ 1.585.

Proof. Since sA|A0 − A1| = A0 − A1 and sB|B0 − B1| = B0 − B1, we
have sAsB|A0 − A1||B0 − B1| = (A0 − A1)(B0 − B1), and thus C = A0B0+
(A0B1 + A1B0)β

k + A1B1β
2k.

Since A0, B0, |A0−A1| and |B0−B1| have (at most) ⌈n/2⌉ words, and A1

and B1 have (at most) ⌊n/2⌋ words, the number K(n) of word multiplications
satisfies the recurrence K(n) = n2 for n < n0, and K(n) = 2K(⌈n/2⌉) +
K(⌊n/2⌋) for n ≥ n0. Assume 2ℓ−1n0 < n ≤ 2ℓn0 with ℓ ≥ 1. Then K(n)

6 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm 1.3 KaratsubaMultiply

Input: A =
∑n−1

0 aiβ
i, B =

∑n−1
0 bjβ

j

Output: C = AB :=
∑2n−1

0 ckβ
k

if n < n0 then return BasecaseMultiply(A,B)
k ← ⌈n/2⌉
(A0, B0) := (A,B) mod βk, (A1, B1) := (A,B) div βk

sA ← sign(A0 − A1), sB ← sign(B0 − B1)
C0 ← KaratsubaMultiply(A0, B0)
C1 ← KaratsubaMultiply(A1, B1)
C2 ← KaratsubaMultiply(|A0 − A1|, |B0 − B1|)
return C := C0 + (C0 + C1 − sAsBC2)β

k + C1β
2k.

is the sum of three K(j) values with j ≤ 2ℓ−1n0, so at most 3ℓ K(j) with
j ≤ n0. Thus K(n) ≤ 3ℓmax(K(n0), (n0 − 1)2), which gives K(n) ≤ Cnα

with C = 31−lg(n0)max(K(n0), (n0 − 1)2).

Different variants of Karatsuba’s algorithm exist; the variant presented
here is known as the subtractive version. Another classical one is the additive
version, which uses A0 +A1 and B0 +B1 instead of |A0−A1| and |B0−B1|.
However, the subtractive version is more convenient for integer arithmetic,
since it avoids the possible carries in A0 + A1 and B0 + B1, which require
either an extra word in these sums, or extra additions.

The efficiency of an implementation of Karatsuba’s algorithm depends
heavily on memory usage. It is important to avoid allocating memory for
the intermediate results |A0 − A1|, |B0 − B1|, C0, C1, and C2 at each step
(although modern compilers are quite good at optimising code and removing
unnecessary memory references). One possible solution is to allow a large
temporary storage of m words, used both for the intermediate results and
for the recursive calls. It can be shown that an auxiliary space of m = 2n
words — or even m = O(logn) — is sufficient (see Exercises 1.7 and 1.8).

Since the product C2 is used only once, it may be faster to have aux-
iliary routines KaratsubaAddmul and KaratsubaSubmul that accumu-
late their result, calling themselves recursively, together with Karatsuba-
Multiply (see Exercise 1.10).

The version presented here uses∼4n additions (or subtractions): 2×(n/2)
to compute |A0 − A1| and |B0 − B1|, then n to add C0 and C1, again n to
add or subtract C2, and n to add (C0 + C1 − sAsBC2)β

k to C0 + C1β
2k. An

Modern Computer Arithmetic, §1.3 7

improved scheme uses only ∼7n/2 additions (see Exercise 1.9).
When considered as algorithms on polynomials, most fast multiplication

algorithms can be viewed as evaluation/interpolation algorithms. Karat-
suba’s algorithm regards the inputs as polynomials A0 + A1x and B0 +B1x
evaluated at x = βk; since their product C(x) is of degree 2, Lagrange’s in-
terpolation theorem says that it is sufficient to evaluate C(x) at three points.
The subtractive version evaluates1 C(x) at x = 0,−1,∞, whereas the addi-
tive version uses x = 0,+1,∞.

1.3.3 Toom-Cook Multiplication

Karatsuba’s idea readily generalizes to what is known as Toom-Cook r-way
multiplication. Write the inputs as a0+ · · ·+ar−1x

r−1 and b0+ · · ·+br−1x
r−1,

with x = βk, and k = ⌈n/r⌉. Since their product C(x) is of degree 2r − 2,
it suffices to evaluate it at 2r − 1 distinct points to be able to recover C(x),
and in particular C(βk). If r is chosen optimally, Toom-Cook multiplication
of n-word numbers takes time n1+O(1/

√
logn).

Most references, when describing subquadratic multiplication algorithms,
only describe Karatsuba and FFT-based algorithms. Nevertheless, the Toom-
Cook algorithm is quite interesting in practice.

Toom-Cook r-way reduces one n-word product to 2r − 1 products of
about n/r words, thus costs O(nν) with ν = log(2r− 1)/ log r. However, the
constant hidden by the big-O notation depends strongly on the evaluation
and interpolation formulæ, which in turn depend on the chosen points. One
possibility is to take −(r − 1), . . . ,−1, 0, 1, . . . , (r − 1) as evaluation points.

The case r = 2 corresponds to Karatsuba’s algorithm (§1.3.2). The
case r = 3 is known as Toom-Cook 3-way, sometimes simply called “the
Toom-Cook algorithm”. Algorithm ToomCook3 uses evaluation points
0, 1,−1, 2,∞, and tries to optimize the evaluation and interpolation formulæ.

The divisions at step 8 are exact; if β is a power of two, the division by
6 can be done using a division by 2 — which consists of a single shift —
followed by a division by 3 (see §1.4.7).

Toom-Cook r-way has to invert a (2r−1)×(2r−1) Vandermonde matrix
with parameters the evaluation points; if one chooses consecutive integer
points, the determinant of that matrix contains all primes up to 2r−2. This
proves that division by (a multiple of) 3 can not be avoided for Toom-Cook

1 Evaluating C(x) at∞ means computing the product A1B1 of the leading coefficients.

8 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm 1.4 ToomCook3

Input: two integers 0 ≤ A,B < βn

Output: AB := c0 + c1β
k + c2β

2k + c3β
3k + c4β

4k with k = ⌈n/3⌉
Require: a threshold n1 ≥ 3
1: if n < n1 then return KaratsubaMultiply(A,B)
2: write A = a0 + a1x+ a2x

2, B = b0 + b1x+ b2x
2 with x = βk.

3: v0 ← ToomCook3(a0, b0)
4: v1 ← ToomCook3(a02 + a1, b02 + b1) where a02 ← a0 + a2, b02 ← b0 + b2
5: v−1 ← ToomCook3(a02 − a1, b02 − b1)
6: v2 ← ToomCook3(a0 + 2a1 + 4a2, b0 + 2b1 + 4b2)
7: v∞ ← ToomCook3(a2, b2)
8: t1 ← (3v0 + 2v−1 + v2)/6− 2v∞, t2 ← (v1 + v−1)/2
9: c0 ← v0, c1 ← v1 − t1, c2 ← t2 − v0 − v∞, c3 ← t1 − t2, c4 ← v∞.

3-way with consecutive integer points. See Exercise 1.14 for a generalization
of this result.

1.3.4 Use of the Fast Fourier Transform (FFT)

Most subquadratic multiplication algorithms can be seen as evaluation-inter-
polation algorithms. They mainly differ in the number of evaluation points,
and the values of those points. However, the evaluation and interpolation
formulæ become intricate in Toom-Cook r-way for large r, since they involve
O(r2) scalar operations. The Fast Fourier Transform (FFT) is a way to
perform evaluation and interpolation efficiently for some special points (roots
of unity) and special values of r. This explains why multiplication algorithms
with the best known asymptotic complexity are based on the Fast Fourier
transform.

There are different flavours of FFT multiplication, depending on the ring
where the operations are performed. The Schönhage-Strassen algorithm,
with a complexity ofO(n logn log logn), works in the ring Z/(2n + 1)Z. Since
it is based on modular computations, we describe it in Chapter 2.

Other commonly used algorithms work with floating-point complex num-
bers. A drawback is that, due to the inexact nature of floating-point com-
putations, a careful error analysis is required to guarantee the correctness of
the implementation, assuming an underlying arithmetic with rigorous error
bounds. See Theorem 3.3.2 in Chapter 3.

Modern Computer Arithmetic, §1.3 9

We say that multiplication is in the FFT range if n is large and the
multiplication algorithm satisfies M(2n) ∼ 2M(n). For example, this is true
if the Schönhage-Strassen multiplication algorithm is used, but not if the
classical algorithm or Karatsuba’s algorithm is used.

1.3.5 Unbalanced Multiplication

The subquadratic algorithms considered so far (Karatsuba and Toom-Cook)
work with equal-size operands. How do we efficiently multiply integers of
different sizes with a subquadratic algorithm? This case is important in
practice but is rarely considered in the literature. Assume the larger operand
has size m, and the smaller has size n ≤ m, and denote by M(m,n) the
corresponding multiplication cost.

If evaluation-interpolation algorithms are used, the cost depends mainly
on the size of the result, that is m+n, so we have M(m,n) ≤M((m+n)/2),
at least approximately. We can do better than M((m + n)/2) if n is much
smaller than m, for example M(m, 1) = O(m).

When m is an exact multiple of n, say m = kn, a trivial strategy is to
cut the larger operand into k pieces, giving M(kn, n) = kM(n) + O(kn).
However, this is not always the best strategy, see Exercise 1.16.

When m is not an exact multiple of n, several strategies are possible:

• split the two operands into an equal number of pieces of unequal sizes;

• or split the two operands into different numbers of pieces.

Each strategy has advantages and disadvantages. We discuss each in turn.

First Strategy: Equal Number of Pieces of Unequal Sizes

Consider for example Karatsuba multiplication, and let K(m,n) be the num-
ber of word-products for an m× n product. Take for example m = 5, n = 3.
A natural idea is to pad the smallest operand to the size of the largest one.
However there are several ways to perform this padding, as shown in the fol-
lowing figure, where the “Karatsuba cut” is represented by a double column:

10 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

a4 a3 a2 a1 a0

b2 b1 b0

A× B

a4 a3 a2 a1 a0

b2 b1 b0

A× (βB)

a4 a3 a2 a1 a0

b2 b1 b0

A× (β2B)

The left variant leads to two products of size 3, i.e., 2K(3, 3), the middle one
toK(2, 1)+K(3, 2)+K(3, 3), and the right one toK(2, 2)+K(3, 1)+K(3, 3),
which give respectively 14, 15, 13 word products.

However, whenever m/2 ≤ n ≤ m, any such “padding variant” will re-
quire K(⌈m/2⌉, ⌈m/2⌉) for the product of the differences (or sums) of the
low and high parts from the operands, due to a “wrap-around” effect when
subtracting the parts from the smaller operand; this will ultimately lead to
a cost similar to that of an m × m product. The “odd-even scheme” of
Algorithm OddEvenKaratsuba (see also Exercise 1.13) avoids this wrap-
around. Here is an example of this algorithm for m = 3 and n = 2. Take

Algorithm 1.5 OddEvenKaratsuba

Input: A =
∑m−1

0 aix
i, B =

∑n−1
0 bjx

j , m ≥ n ≥ 1
Output: A · B
if n = 1 then return

∑m−1
0 aib0x

i

k ← ⌈m/2⌉, ℓ← ⌈n/2⌋
write A = A0(x

2) + xA1(x
2), B = B0(x

2) + xB1(x
2)

C0 ← OddEvenKaratsuba(A0, B0)
C1 ← OddEvenKaratsuba(A0 + A1, B0 +B1)
C2 ← OddEvenKaratsuba(A1, B1)
return C0(x

2) + x(C1 − C0 − C2)(x
2) + x2C2(x

2).

A = a2x
2 + a1x+ a0 and B = b1x+ b0. This yields A0 = a2x+ a0, A1 = a1,

B0 = b0, B1 = b1, thus C0 = (a2x + a0)b0, C1 = (a2x + a0 + a1)(b0 + b1),
C2 = a1b1. We thus get K(3, 2) = 2K(2, 1) + K(1) = 5 with the odd-even
scheme. The general recurrence for the odd-even scheme is:

K(m,n) = 2K(⌈m/2⌉, ⌈n/2⌉) +K(⌊m/2⌋, ⌊n/2⌋),

instead of

K(m,n) = 2K(⌈m/2⌉, ⌈m/2⌉) +K(⌊m/2⌋, n− ⌈m/2⌉)

Modern Computer Arithmetic, §1.3 11

for the classical variant, assuming n > m/2. We see that the second param-
eter in K(·, ·) only depends on the smaller size n for the odd-even scheme.

As for the classical variant, there are several ways of padding with the odd-
even scheme. Considerm = 5, n = 3, and writeA := a4x

4+a3x
3+a2x

2+a1x+
a0 = xA1(x

2) +A0(x
2), with A1(x) = a3x+ a1, A0(x) = a4x

2+ a2x+ a0; and
B := b2x

2+ b1x+ b0 = xB1(x
2) +B0(x

2), with B1(x) = b1, B0(x) = b2x+ b0.
Without padding, we write AB = x2(A1B1)(x

2) + x((A0 + A1)(B0 + B1) −
A1B1−A0B0)(x

2) + (A0B0)(x
2), which gives K(5, 3) = K(2, 1)+ 2K(3, 2) =

12. With padding, we consider xB = xB′
1(x

2) + B′
0(x

2), with B′
1(x) =

b2x + b0, B′
0 = b1x. This gives K(2, 2) = 3 for A1B

′
1, K(3, 2) = 5 for

(A0 + A1)(B
′
0 + B′

1), and K(3, 1) = 3 for A0B
′
0 — taking into account the

fact that B′
0 has only one non-zero coefficient — thus a total of 11 only.

Note that when the variable x corresponds to say β = 264, Algorithm
OddEvenKaratsuba as presented above is not very practical in the integer
case, because of a problem with carries. For example, in the sum A0+A1 we
have ⌊m/2⌋ carries to store. A workaround is to consider x to be say β10, in
which case we have to store only one carry bit for 10 words, instead of one
carry bit per word.

The first strategy, which consists in cutting the operands into an equal
number of pieces of unequal sizes, does not scale up nicely. Assume for
example that we want to multiply a number of 999 words by another number
of 699 words, using Toom-Cook 3-way. With the classical variant — without
padding — and a “large” base of β333, we cut the larger operand into three
pieces of 333 words and the smaller one into two pieces of 333 words and
one small piece of 33 words. This gives four full 333 × 333 products —
ignoring carries — and one unbalanced 333× 33 product (for the evaluation
at x =∞). The “odd-even” variant cuts the larger operand into three pieces
of 333 words, and the smaller operand into three pieces of 233 words, giving
rise to five equally unbalanced 333× 233 products, again ignoring carries.

Second Strategy: Different Number of Pieces of Equal Sizes

Instead of splitting unbalanced operands into an equal number of pieces —
which are then necessarily of different sizes — an alternative strategy is to
split the operands into a different number of pieces, and use a multiplica-
tion algorithm which is naturally unbalanced. Consider again the example
of multiplying two numbers of 999 and 699 words. Assume we have a multi-

12 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

plication algorithm, say Toom-(3, 2), which multiplies a number of 3n words
by another number of 2n words; this requires four products of numbers of
about n words. Using n = 350, we can split the larger number into two pieces
of 350 words, and one piece of 299 words, and the smaller number into one
piece of 350 words and one piece of 349 words.

Similarly, for two inputs of 1000 and 500 words, we can use a Toom-
(4, 2) algorithm which multiplies two numbers of 4n and 2n words, with
n = 250. Such an algorithm requires five evaluation points; if we choose the
same points as for Toom 3-way, then the interpolation phase can be shared
between both implementations.

It seems that this second strategy is not compatible with the “odd-even”
variant, which requires that both operands are cut into the same number of
pieces. Consider for example the “odd-even” variant modulo 3. It writes the
numbers to be multiplied as A = a(β) and B = b(β) with a(t) = a0(t

3) +
ta1(t

3) + t2a2(t
3), and similarly b(t) = b0(t

3) + tb1(t
3) + t2b2(t

3). We see that
the number of pieces of each operand is the chosen modulus, here 3 (see
Exercise 1.11).

Asymptotic complexity of unbalanced multiplication

Suppose m ≥ n and n is large. To use an evaluation-interpolation scheme
we need to evaluate the product at m + n points, whereas balanced k by k
multiplication needs 2k points. Taking k ≈ (m+n)/2, we see thatM(m,n) ≤
M((m+ n)/2)(1 + o(1)) as n→∞. On the other hand, from the discussion
above, we have M(m,n) ≤ ⌈m/n⌉M(n). This explains the upper bound on
M(m,n) given in the Summary of Complexities at the end of the book.

1.3.6 Squaring

In many applications, a significant proportion of the multiplications have
equal operands, i.e., are squarings. Hence it is worth tuning a special squar-
ing implementation as much as the implementation of multiplication itself,
bearing in mind that the best possible speedup is two (see Exercise 1.17).

For naive multiplication, Algorithm BasecaseMultiply (§1.3.1) can be
modified to obtain a theoretical speedup of two, since only about half of the
products aibj need to be computed.

Subquadratic algorithms like Karatsuba and Toom-Cook r-way can be
specialized for squaring too. In general, the threshold obtained is larger than

Modern Computer Arithmetic, §1.3 13

4 18 32 46 60 74 88 102 116 130 144 158 172 186 200

4 bc

11 bc bc

18 bc bc 22

25 bc bc bc 22

32 bc bc bc bc 22

39 bc bc bc 32 32 33

46 bc bc bc 32 32 32 22

53 bc bc bc bc 32 32 32 22

60 bc bc bc bc 32 32 32 32 22

67 bc bc bc bc 42 32 32 32 33 33

74 bc bc bc bc 42 32 32 32 32 33 33

81 bc bc bc bc 32 32 32 32 32 33 33 33

88 bc bc bc bc 32 42 42 32 32 32 33 33 33

95 bc bc bc bc 42 42 42 32 32 32 33 33 33 22

102 bc bc bc bc 42 42 42 42 32 32 32 33 33 44 33

109 bc bc bc bc bc 42 42 42 42 32 32 32 33 32 44 44

116 bc bc bc bc bc 42 42 42 42 32 32 32 32 32 44 44 44

123 bc bc bc bc bc 42 42 42 42 42 32 32 32 32 44 44 44 44

130 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 44 44 44 44 44

137 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 33 33 44 33 33 33

144 bc bc bc bc bc 42 42 42 42 42 42 32 32 32 32 32 33 44 33 33 33

151 bc bc bc bc bc 42 42 42 42 42 42 42 32 32 32 32 33 33 33 33 33 33

158 bc bc bc bc bc bc 42 42 42 42 42 42 32 32 32 32 32 33 33 33 33 33 33

165 bc bc bc bc bc bc 42 42 32 42 42 42 42 32 32 32 33 33 33 33 33 33 33 33

172 bc bc bc bc bc bc 42 42 42 42 42 42 42 42 32 32 32 32 32 32 44 33 44 44 44

179 bc bc bc bc bc bc 42 42 42 32 42 42 42 42 32 32 32 32 33 32 44 44 33 44 44 44

186 bc bc bc bc bc bc bc 42 42 42 42 42 42 42 42 32 32 32 33 32 44 44 44 44 44 44 44

193 bc bc bc bc bc bc bc 42 42 42 42 42 42 42 42 42 32 32 32 32 32 44 44 44 33 44 44 44

200 bc bc bc bc bc bc bc 42 42 42 42 42 42 42 42 42 32 32 32 32 32 33 44 44 44 44 44 44 44

Figure 1.1: The best algorithm to multiply two numbers of x and y words
for 4 ≤ x ≤ y ≤ 200: bc is schoolbook multiplication, 22 is Karatsuba’s
algorithm, 33 is Toom-3, 32 is Toom-(3, 2), 44 is Toom-4, and 42 is Toom-
(4, 2). This graph was obtained on a Core 2, with GMP 5.0.0, and GCC 4.4.2.
Note that for x ≤ (y + 3)/4, only the schoolbook multiplication is available;
since we did not consider the algorithm that cuts the larger operand into
several pieces, this explains why bc is best for say x = 46 and y = 200.

14 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

mpn_mul_n
mpn_sqr

Figure 1.2: Ratio of the squaring and multiplication time for the GNU MP
library, version 5.0.0, on a Core 2 processor, up to one million words.

the corresponding multiplication threshold. For example, on a modern 64-bit
computer, one can expect a threshold between the naive quadratic squaring
and Karatsuba’s algorithm in the 30-word range, between Karatsuba’s and
Toom-Cook 3-way in the 100-word range, between Toom-Cook 3-way and
Toom-Cook 4-way in the 150-word range, and between Toom-Cook 4-way
and the FFT in the 2500-word range.

Figure 1.2 compares the multiplication and squaring time with the GNU MP
library. It shows that whatever the word range, a good rule of thumb is to
count 2/3 of the cost of a product for a squaring.

The classical approach for fast squaring is to take a fast multiplica-
tion algorithm, say Toom-Cook r-way, and to replace the 2r − 1 recursive
products by 2r − 1 recursive squarings. For example, starting from Algo-
rithm ToomCook3, we obtain five recursive squarings a20, (a0 + a1 + a2)

2,
(a0− a1 + a2)

2, (a0 +2a1 +4a2)
2, and a22. A different approach, called asym-

metric squaring, is to allow products which are not squares in the recursive
calls. For example, the square of a2β

2+a1β+a0 is c4β
4+c3β

3+c2β
2+c1β+c0,

Modern Computer Arithmetic, §1.4 15

where c4 = a22, c3 = 2a1a2, c2 = c0 + c4 − s, c1 = 2a1a0, and c0 = a20, where
s = (a0 − a2 + a1)(a0 − a2 − a1). This formula performs two squarings, and
three normal products. Such asymmetric squaring formulæ are not asymp-
totically optimal, but might be faster in some medium range, due to simpler
evaluation or interpolation phases.

1.3.7 Multiplication by a Constant

It often happens that the same multiplier is used in several consecutive oper-
ations, or even for a complete calculation. If this constant multiplier is small,
i.e., less than the base β, not much speedup can be obtained compared to
the usual product. We thus consider here a “large” constant multiplier.

When using evaluation-interpolation algorithms, like Karatsuba or Toom-
Cook (see §1.3.2–1.3.3), one may store the evaluations for that fixed multi-
plier at the different points chosen.

Special-purpose algorithms also exist. These algorithms differ from clas-
sical multiplication algorithms because they take into account the value of
the given constant multiplier, and not only its size in bits or digits. They
also differ in the model of complexity used. For example, R. Bernstein’s
algorithm [27], which is used by several compilers to compute addresses in
data structure records, considers as basic operation x, y 7→ 2ix ± y, with a
cost assumed to be independent of the integer i.

For example, Bernstein’s algorithm computes 20061x in five steps:

x1 := 31x = 25x− x
x2 := 93x = 21x1 + x1

x3 := 743x = 23x2 − x
x4 := 6687x = 23x3 + x3

20061x = 21x4 + x4.

1.4 Division

Division is the next operation to consider after multiplication. Optimizing
division is almost as important as optimizing multiplication, since division is
usually more expensive, thus the speedup obtained on division will be more
significant. On the other hand, one usually performs more multiplications
than divisions.

16 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

One strategy is to avoid divisions when possible, or replace them by
multiplications. An example is when the same divisor is used for several
consecutive operations; one can then precompute its inverse (see §2.4.1).

We distinguish several kinds of division: full division computes both quo-
tient and remainder, while in other cases only the quotient (for example,
when dividing two floating-point significands) or remainder (when multiply-
ing two residues modulo n) is needed. We also discuss exact division — when
the remainder is known to be zero — and the problem of dividing by a single
word.

1.4.1 Naive Division

In all division algorithms, we assume that divisors are normalized. We say
that B :=

∑n−1
0 bjβ

j is normalized when its most significant word bn−1 satis-
fies bn−1 ≥ β/2. This is a stricter condition (for β > 2) than simply requiring
that bn−1 be nonzero.

Algorithm 1.6 BasecaseDivRem

Input: A =
∑n+m−1

0 aiβ
i, B =

∑n−1
0 bjβ

j, B normalized, m ≥ 0
Output: quotient Q and remainder R of A divided by B
1: if A ≥ βmB then qm ← 1, A← A− βmB else qm ← 0
2: for j from m− 1 downto 0 do
3: q∗j ← ⌊(an+jβ + an+j−1)/bn−1⌋ ⊲ quotient selection step
4: qj ← min(q∗j , β − 1)
5: A← A− qjβ

jB
6: while A < 0 do
7: qj ← qj − 1
8: A← A + βjB

9: return Q =
∑m

0 qjβ
j, R = A.

(Note: in step 3, ai denotes the current value of the i-th word of A, which
may be modified at steps 5 and 8.)

If B is not normalized, we can compute A′ = 2kA and B′ = 2kB so that
B′ is normalized, then divide A′ by B′ giving A′ = Q′B′+R′; the quotient and
remainder of the division of A by B are respectively Q := Q′ and R := R′/2k,
the latter division being exact.

Modern Computer Arithmetic, §1.4 17

Theorem 1.4.1 Algorithm BasecaseDivRem correctly computes the quo-
tient and remainder of the division of A by a normalized B, in O(n(m+ 1))
word operations.

Proof. We prove that the invariant A < βj+1B holds at step 2. This holds
trivially for j = m− 1: B being normalized, A < 2βmB initially.

First consider the case qj = q∗j : then qjbn−1 ≥ an+jβ + an+j−1 − bn−1 + 1,
thus

A− qjβ
jB ≤ (bn−1 − 1)βn+j−1 + (A mod βn+j−1),

which ensures that the new an+j vanishes, and an+j−1 < bn−1, thus A < βjB
after step 5. Now A may become negative after step 5, but since qjbn−1 ≤
an+jβ + an+j−1, we have:

A− qjβ
jB > (an+jβ + an+j−1)β

n+j−1 − qj(bn−1β
n−1 + βn−1)βj

≥ −qjβn+j−1.

Therefore A−qjβ
jB+2βjB ≥ (2bn−1−qj)β

n+j−1 > 0, which proves that the
while-loop at steps 6-8 is performed at most twice [143, Theorem 4.3.1.B].
When the while-loop is entered, A may increase only by βjB at a time, hence
A < βjB at exit.

In the case qj 6= q∗j , i.e., q
∗
j ≥ β, we have before the while-loop: A <

βj+1B − (β − 1)βjB = βjB, thus the invariant holds. If the while-loop is
entered, the same reasoning as above holds.

We conclude that when the for-loop ends, 0 ≤ A < B holds, and since
(
∑m

j qjβ
j)B + A is invariant throughout the algorithm, the quotient Q and

remainder R are correct.
The most expensive part is step 5, which costs O(n) operations for qjB

(the multiplication by βj is simply a word-shift); the total cost is O(n(m+1)).
(For m = 0 we need O(n) work if A ≥ B, and even if A < B to compare the
inputs in the case A = B − 1.)

Here is an example of algorithm BasecaseDivRem for the inputs
A = 766 970 544 842 443 844 and B = 862 664 913, with β = 1000, which
gives quotient Q = 889 071 217 and remainder R = 778 334 723.

j A qj A− qjBβj after correction

2 766 970 544 842 443 844 889 61 437 185 443 844 no change
1 61 437 185 443 844 071 187 976 620 844 no change
0 187 976 620 844 218 −84 330 190 778 334 723

18 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm BasecaseDivRem simplifies when A < βmB: remove step 1,
and change m into m− 1 in the return value Q. However, the more general
form we give is more convenient for a computer implementation, and will be
used below.

A possible variant when q∗j ≥ β is to let qj = β; then A− qjβ
jB at step

5 reduces to a single subtraction of B shifted by j + 1 words. However in
this case the while-loop will be performed at least once, which corresponds
to the identity A− (β − 1)βjB = A− βj+1B + βjB.

If instead of having B normalized, i.e., bn ≥ β/2, one has bn ≥ β/k, there
can be up to k iterations of the while-loop (and step 1 has to be modified).

A drawback of Algorithm BasecaseDivRem is that the test A < 0
at line 6 is true with non-negligible probability, therefore branch prediction
algorithms available on modern processors will fail, resulting in wasted cycles.
A workaround is to compute a more accurate partial quotient, in order to
decrease the proportion of corrections to almost zero (see Exercise 1.20).

1.4.2 Divisor Preconditioning

Sometimes the quotient selection — step 3 of Algorithm BasecaseDivRem
— is quite expensive compared to the total cost, especially for small sizes.
Indeed, some processors do not have a machine instruction for the division
of two words by one word; one way to compute q∗j is then to precompute a
one-word approximation of the inverse of bn−1, and to multiply it by an+jβ+
an+j−1.

Svoboda’s algorithm makes the quotient selection trivial, after precon-
ditioning the divisor. The main idea is that if bn−1 equals the base β in
Algorithm BasecaseDivRem, then the quotient selection is easy, since it
suffices to take q∗j = an+j. (In addition, q∗j ≤ β − 1 is then always fulfilled,
thus step 4 of BasecaseDivRem can be avoided, and q∗j replaced by qj.)

With the example of §1.4.1, Svoboda’s algorithm would give k = 1160,
B′ = 1 000 691 299 080:

j A qj A− qjB
′βj after correction

2 766 970 544 842 443 844 766 441 009 747 163 844 no change
1 441 009 747 163 844 441 −295 115 730 436 705 575 568 644

Modern Computer Arithmetic, §1.4 19

Algorithm 1.7 SvobodaDivision

Input: A =
∑n+m−1

0 aiβ
i, B =

∑n−1
0 bjβ

j normalized, A < βmB, m ≥ 1
Output: quotient Q and remainder R of A divided by B
1: k ← ⌈βn+1/B⌉
2: B′ ← kB = βn+1 +

∑n−1
0 b′jβ

j

3: for j from m− 1 downto 1 do
4: qj ← an+j ⊲ current value of an+j

5: A← A− qjβ
j−1B′

6: if A < 0 then
7: qj ← qj − 1
8: A← A+ βj−1B′

9: Q′ =
∑m−1

1 qjβ
j, R′ = A

10: (q0, R)← (R′ div B,R′ mod B) ⊲ using BasecaseDivRem
11: return Q = kQ′ + q0, R.

We thus get Q′ = 766 440 and R′ = 705 575 568 644. The final division of
step 10 gives R′ = 817B+778 334 723, thus we get Q = 1 160·766 440+817 =
889 071 217, and R = 778 334 723, as in §1.4.1.

Svoboda’s algorithm is especially interesting when only the remainder is
needed, since then one can avoid the “deconditioning” Q = kQ′ + q0. Note
that when only the quotient is needed, dividing A′ = kA by B′ = kB is
another way to compute it.

1.4.3 Divide and Conquer Division

The base-case division of §1.4.1 determines the quotient word by word. A
natural idea is to try getting several words at a time, for example replacing
the quotient selection step in Algorithm BasecaseDivRem by:

q∗j ←
⌊
an+jβ

3 + an+j−1β
2 + an+j−2β + an+j−3

bn−1β + bn−2

⌋
.

Since q∗j has then two words, fast multiplication algorithms (§1.3) might
speed up the computation of qjB at step 5 of Algorithm BasecaseDivRem.

More generally, the most significant half of the quotient — say Q1, of ℓ =
m−k words —mainly depends on the ℓmost significant words of the dividend
and divisor. Once a good approximation to Q1 is known, fast multiplication

20 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

algorithms can be used to compute the partial remainder A − Q1Bβk. The
second idea of the divide and conquer algorithm RecursiveDivRem is to
compute the corresponding remainder together with the partial quotient Q1;
in such a way, one only has to subtract the product of Q1 by the low part of
the divisor, before computing the low part of the quotient.

Algorithm 1.8 RecursiveDivRem

Input: A =
∑n+m−1

0 aiβ
i, B =

∑n−1
0 bjβ

j, B normalized, n ≥ m
Output: quotient Q and remainder R of A divided by B
1: if m < 2 then return BasecaseDivRem(A,B)
2: k ← ⌊m/2⌋, B1 ← B div βk, B0 ← B mod βk

3: (Q1, R1)← RecursiveDivRem(A div β2k, B1)
4: A′ ← R1β

2k + (A mod β2k)−Q1B0β
k

5: while A′ < 0 do Q1 ← Q1 − 1, A′ ← A′ + βkB
6: (Q0, R0)← RecursiveDivRem(A′ div βk, B1)
7: A′′ ← R0β

k + (A′ mod βk)−Q0B0

8: while A′′ < 0 do Q0 ← Q0 − 1, A′′ ← A′′ +B
9: return Q := Q1β

k +Q0, R := A′′.

In Algorithm RecursiveDivRem, one may replace the condition m < 2
at step 1 by m < T for any integer T ≥ 2. In practice, T is usually in the
range 50 to 200.

One can not require A < βmB at input, since this condition may not be
satisfied in the recursive calls. Consider for example A = 5517, B = 56 with
β = 10: the first recursive call will divide 55 by 5, which yields a two-digit
quotient 11. Even A ≤ βmB is not recursively fulfilled, as this example
shows. The weakest possible input condition is that the n most significant
words of A do not exceed those of B, i.e., A < βm(B + 1). In that case, the
quotient is bounded by βm + ⌊(βm − 1)/B⌋, which yields βm + 1 in the case
n = m (compare Exercise 1.19). See also Exercise 1.22.

Theorem 1.4.2 Algorithm RecursiveDivRem is correct, and uses
D(n+m,n) operations, where D(n+m,n) = 2D(n, n−m/2)+ 2M(m/2)+
O(n). In particular D(n) := D(2n, n) satisfies D(n) = 2D(n/2)+2M(n/2)+
O(n), which gives D(n) ∼ M(n)/(2α−1 − 1) for M(n) ∼ nα, α > 1.

Proof. We first check the assumption for the recursive calls: B1 is normal-
ized since it has the same most significant word than B.

Modern Computer Arithmetic, §1.4 21

After step 3, we have A = (Q1B1+R1)β
2k +(A mod β2k), thus after step

4: A′ = A − Q1β
kB, which still holds after step 5. After step 6, we have

A′ = (Q0B1+R0)β
k+(A′ mod βk), thus after step 7: A′′ = A′−Q0B, which

still holds after step 8. At step 9 we thus have A = QB +R.

A div β2k has m+n−2k words, while B1 has n−k words, thus 0 ≤ Q1 <
2βm−k and 0 ≤ R1 < B1 < βn−k. Thus at step 4, −2βm+k < A′ < βkB.
Since B is normalized, the while-loop at step 5 is performed at most four
times (this can happen only when n = m). At step 6 we have 0 ≤ A′ < βkB,
thus A′ div βk has at most n words.

It follows 0 ≤ Q0 < 2βk and 0 ≤ R0 < B1 < βn−k. Hence at step
7, −2β2k < A′′ < B, and after at most four iterations at step 8, we have
0 ≤ A′′ < B.

Theorem 1.4.2 gives D(n) ∼ 2M(n) for Karatsuba multiplication, and
D(n) ∼ 2.63M(n) for Toom-Cook 3-way; in the FFT range, see Exercise 1.23.

The same idea as in Exercise 1.20 applies: to decrease the probability that
the estimated quotients Q1 and Q0 are too large, use one extra word of the
truncated dividend and divisors in the recursive calls toRecursiveDivRem.

A graphical view of Algorithm RecursiveDivRem in the case m = n
is given in Figure 1.3, which represents the multiplication Q · B: one first
computes the lower left corner in D(n/2) (step 3), second the lower right
corner in M(n/2) (step 4), third the upper left corner in D(n/2) (step 6),
and finally the upper right corner in M(n/2) (step 7).

Unbalanced Division

The condition n ≥ m in Algorithm RecursiveDivRem means that the
dividend A is at most twice as large as the divisor B.

When A is more than twice as large asB (m > n with the notation above),
a possible strategy (see Exercise 1.24) computes n words of the quotient at
a time. This reduces to the base-case algorithm, replacing β by βn.

Figure 1.4 compares unbalanced multiplication and division in GNU MP.
As expected, multiplying x words by n − x words takes the same time as
multiplying n− x words by n words. However, there is no symmetry for the
division, since dividing n words by x words for x < n/2 is more expensive,
at least for the version of GMP that we used, than dividing n words by n−x
words.

22 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

quotient Q

divisor B

M(n/2)

M(n/2)

M(n/4)

M(n/4)

M(n/4)

M(n/4)

M(n
8
)

M(n
8
)

M(n
8
)

M(n
8
)

M(n
8
)

M(n
8
)

M(n
8
)

M(n
8
)

Figure 1.3: Divide and conquer division: a graphical view (most significant
parts at the lower left corner).

Algorithm 1.9 UnbalancedDivision

Input: A =
∑n+m−1

0 aiβ
i, B =

∑n−1
0 bjβ

j, B normalized, m > n
Output: quotient Q and remainder R of A divided by B
Q← 0
while m > n do

(q, r)← RecursiveDivRem(A div βm−n, B) ⊲ 2n by n division
Q← Qβn + q
A← rβm−n + A mod βm−n

m← m− n

(q, r)← RecursiveDivRem(A,B)
return Q := Qβm + q, R := r.

Modern Computer Arithmetic, §1.4 23

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 100 200 300 400 500 600 700 800 900 1000

div
mul

Figure 1.4: Time in 10−5 seconds for the multiplication (lower curve) of x
words by 1000 − x words and for the division (upper curve) of 1000 words
by x words, with GMP 5.0.0 on a Core 2 running at 2.83GHz.

1.4.4 Newton’s Method

Newton’s iteration gives the division algorithm with best asymptotic com-
plexity. One basic component of Newton’s iteration is the computation of
an approximate inverse. We refer here to Chapter 4. The p-adic version
of Newton’s method, also called Hensel lifting, is used in §1.4.5 for exact
division.

1.4.5 Exact Division

A division is exact when the remainder is zero. This happens, for example,
when normalizing a fraction a/b: one divides both a and b by their greatest
common divisor, and both divisions are exact. If the remainder is known
a priori to be zero, this information is useful to speed up the computation
of the quotient. Two strategies are possible:

• use MSB (most significant bits first) division algorithms, without com-
puting the lower part of the remainder. Here, one has to take care

24 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

of rounding errors, in order to guarantee the correctness of the final
result; or

• use LSB (least significant bits first) algorithms. If the quotient is known
to be less than βn, computing a/b mod βn will reveal it.

Subquadratic algorithms can use both strategies. We describe a least sig-
nificant bit algorithm using Hensel lifting, which can be viewed as a p-adic
version of Newton’s method:

Algorithm 1.10 ExactDivision

Input: A =
∑n−1

0 aiβ
i, B =

∑n−1
0 bjβ

j

Output: quotient Q = A/B mod βn

Require: gcd(b0, β) = 1
1: C ← 1/b0 mod β
2: for i from ⌈lg n⌉ − 1 downto 1 do
3: k ← ⌈n/2i⌉
4: C ← C + C(1−BC) mod βk

5: Q← AC mod βk

6: Q← Q+ C(A− BQ) mod βn.

Algorithm ExactDivision uses the Karp-Markstein trick: lines 1-4 com-
pute 1/B mod β⌈n/2⌉, while the two last lines incorporate the dividend to
obtain A/B mod βn. Note that the middle product (§3.3.2) can be used in
lines 4 and 6, to speed up the computation of 1−BC and A−BQ respectively.

A further gain can be obtained by using both strategies simultaneously:
compute the most significant n/2 bits of the quotient using the MSB strategy,
and the least significant n/2 bits using the LSB strategy. Since a division of
size n is replaced by two divisions of size n/2, this gives a speedup of up to
two for quadratic algorithms (see Exercise 1.27).

1.4.6 Only Quotient or Remainder Wanted

When both the quotient and remainder of a division are needed, it is best
to compute them simultaneously. This may seem to be a trivial statement,
nevertheless some high-level languages provide both div and mod, but no
single instruction to compute both quotient and remainder.

Modern Computer Arithmetic, §1.4 25

Once the quotient is known, the remainder can be recovered by a single
multiplication as A−QB; on the other hand, when the remainder is known,
the quotient can be recovered by an exact division as (A−R)/B (§1.4.5).

However, it often happens that only one of the quotient or remainder is
needed. For example, the division of two floating-point numbers reduces to
the quotient of their significands (see Chapter 3). Conversely, the multipli-
cation of two numbers modulo N reduces to the remainder of their product
after division by N (see Chapter 2). In such cases, one may wonder if faster
algorithms exist.

For a dividend of 2n words and a divisor of n words, a significant speedup
— up to a factor of two for quadratic algorithms — can be obtained when
only the quotient is needed, since one does not need to update the low n
words of the current remainder (step 5 of Algorithm BasecaseDivRem).

It seems difficult to get a similar speedup when only the remainder is
required. One possibility is to use Svoboda’s algorithm, but this requires
some precomputation, so is only useful when several divisions are performed
with the same divisor. The idea is the following: precompute a multiple B1

of B, having 3n/2 words, the n/2 most significant words being βn/2. Then
reducing A mod B1 requires a single n/2 × n multiplication. Once A is re-
duced to A1 of 3n/2 words by Svoboda’s algorithm with cost 2M(n/2), use
RecursiveDivRem on A1 and B, which costs D(n/2)+M(n/2). The total
cost is thus 3M(n/2) + D(n/2), instead of 2M(n/2) + 2D(n/2) for a full
division with RecursiveDivRem. This gives 5M(n)/3 for Karatsuba and
2.04M(n) for Toom-Cook 3-way, instead of 2M(n) and 2.63M(n) respec-
tively. A similar algorithm is described in §2.4.2 (Subquadratic Montgomery
Reduction) with further optimizations.

1.4.7 Division by a Single Word

We assume here that we want to divide a multiple precision number by a
one-word integer c. As for multiplication by a one-word integer, this is an
important special case. It arises for example in Toom-Cook multiplication,
where one has to perform an exact division by 3 (§1.3.3). One could of course
use a classical division algorithm (§1.4.1). When gcd(c, β) = 1, Algorithm
DivideByWord might be used to compute a modular division:

A+ bβn = cQ,

where the “carry” b will be zero when the division is exact.

26 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm 1.11 DivideByWord

Input: A =
∑n−1

0 aiβ
i, 0 ≤ c < β, gcd(c, β) = 1

Output: Q =
∑n−1

0 qiβ
i and 0 ≤ b < c such that A+ bβn = cQ

1: d← 1/c mod β ⊲ might be precomputed
2: b← 0
3: for i from 0 to n− 1 do
4: if b ≤ ai then (x, b′)← (ai − b, 0)
5: else (x, b′)← (ai − b+ β, 1)
6: qi ← dx mod β
7: b′′ ← (qic− x)/β
8: b← b′ + b′′

9: return
∑n−1

0 qiβ
i, b.

Theorem 1.4.3 The output of Alg. DivideByWord satisfies A+bβn = cQ.

Proof. We show that after step i, 0 ≤ i < n, we have Ai + bβi+1 = cQi,
where Ai :=

∑i
j=0 aiβ

i and Qi :=
∑i

j=0 qiβ
i. For i = 0, this is a0 + bβ = cq0,

which is just line 7: since q0 = a0/c mod β, q0c−a0 is divisible by β. Assume
now that Ai−1 + bβi = cQi−1 holds for 1 ≤ i < n. We have ai − b+ b′β = x,
so x + b′′β = cqi, thus Ai + (b′ + b′′)βi+1 = Ai−1 + βi(ai + b′β + b′′β) =
cQi−1 − bβi + βi(x+ b− b′β + b′β + b′′β) = cQi−1 + βi(x+ b′′β) = cQi.

Remark: at step 7, since 0 ≤ x < β, b′′ can also be obtained as ⌊qic/β⌋.
Algorithm DivideByWord is just a special case of Hensel’s division,

which is the topic of the next section; it can easily be extended to divide by
integers of a few words.

1.4.8 Hensel’s Division

Classical division involves cancelling the most significant part of the divi-
dend by a multiple of the divisor, while Hensel’s division cancels the least
significant part (Figure 1.5). Given a dividend A of 2n words and a divisor
B of n words, the classical or MSB (most significant bit) division computes
a quotient Q and a remainder R such that A = QB + R, while Hensel’s or
LSB (least significant bit) division computes a LSB-quotient Q′ and a LSB-
remainder R′ such that A = Q′B + R′βn. While MSB division requires the

Modern Computer Arithmetic, §1.5 27

A

B

QB

R

A

B

Q′B

R′

Figure 1.5: Classical/MSB division (left) vs Hensel/LSB division (right).

most significant bit of B to be set, LSB division requires B to be relatively
prime to the word base β, i.e., B to be odd for β a power of two.

The LSB-quotient is uniquely defined by Q′ = A/B mod βn, with
0 ≤ Q′ < βn. This in turn uniquely defines the LSB-remainder
R′ = (A−Q′B)β−n, with −B < R′ < βn.

Most MSB-division variants (naive, with preconditioning, divide and con-
quer, Newton’s iteration) have their LSB-counterpart. For example, LSB pre-
conditioning involves using a multiple kB of the divisor such that
kB = 1 mod β, and Newton’s iteration is called Hensel lifting in the LSB
case. The exact division algorithm described at the end of §1.4.5 uses both
MSB- and LSB-division simultaneously. One important difference is that
LSB-division does not need any correction step, since the carries go in the
direction opposite to the cancelled bits.

When only the remainder is wanted, Hensel’s division is usually known
as Montgomery reduction (see §2.4.2).

1.5 Roots

1.5.1 Square Root

The “paper and pencil” method once taught at school to extract square roots
is very similar to “paper and pencil” division. It decomposes an integer m
of the form s2 + r, taking two digits of m at a time, and finding one digit of
s for each two digits of m. It is based on the following idea. If m = s2 + r
is the current decomposition, then taking two more digits of the argument,
we have a decomposition of the form 100m + r′ = 100s2 + 100r + r′ with

28 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

0 ≤ r′ < 100. Since (10s+ t)2 = 100s2 + 20st+ t2, a good approximation to
the next digit t can be found by dividing 10r by 2s.

Algorithm SqrtRem generalizes this idea to a power βℓ of the internal
base close to m1/4: one obtains a divide and conquer algorithm, which is in
fact an error-free variant of Newton’s method (cf Chapter 4):

Algorithm 1.12 SqrtRem

Input: m = an−1β
n−1 + · · ·+ a1β + a0 with an−1 6= 0

Output: (s, r) such that s2 ≤ m = s2 + r < (s+ 1)2

Require: a base-case routine BasecaseSqrtRem
ℓ← ⌊(n− 1)/4⌋
if ℓ = 0 then return BasecaseSqrtRem(m)
write m = a3β

3ℓ + a2β
2ℓ + a1β

ℓ + a0 with 0 ≤ a2, a1, a0 < βℓ

(s′, r′)← SqrtRem(a3β
ℓ + a2)

(q, u)← DivRem(r′βℓ + a1, 2s
′)

s← s′βℓ + q
r ← uβℓ + a0 − q2

if r < 0 then
r ← r + 2s− 1, s← s− 1

return (s, r).

Theorem 1.5.1 Algorithm SqrtRem correctly returns the integer square
root s and remainder r of the input m, and has complexity R(2n) ∼ R(n) +
D(n) + S(n) where D(n) and S(n) are the complexities of the division with
remainder and squaring respectively. This gives R(n) ∼ n2/2 with naive
multiplication, R(n) ∼ 4K(n)/3 with Karatsuba’s multiplication, assuming
S(n) ∼ 2M(n)/3.

As an example, assume Algorithm SqrtRem is called onm = 123 456 789
with β = 10. One has n = 9, ℓ = 2, a3 = 123, a2 = 45, a1 = 67, and a0 = 89.
The recursive call for a3β

ℓ + a2 = 12 345 yields s′ = 111 and r′ = 24. The
DivRem call yields q = 11 and u = 25, which gives s = 11 111 and r = 2 468.

Another nice way to compute the integer square root of an integer m, i.e.,
⌊m1/2⌋, is Algorithm SqrtInt, which is an all-integer version of Newton’s
method (§4.2).

Still with input 123 456 789, we successively get s = 61 728 395, 30 864 198,
15 432 100, 7 716 053, 3 858 034, 1 929 032, 964 547, 482 337, 241 296, 120 903,

Modern Computer Arithmetic, §1.5 29

Algorithm 1.13 SqrtInt
Input: an integer m ≥ 1
Output: s = ⌊m1/2⌋
1: u← m ⊲ any value u ≥ ⌊m1/2⌋ works
2: repeat
3: s← u
4: t← s + ⌊m/s⌋
5: u← ⌊t/2⌋
6: until u ≥ s
7: return s.

60 962, 31 493, 17 706, 12 339, 11 172, 11 111, 11 111. Convergence is slow
because the initial value of u assigned at line 1 is much too large. However,
any initial value greater than or equal to ⌊m1/2⌋ works (see the proof of
Algorithm RootInt below): starting from s = 12 000, one gets s = 11 144
then s = 11 111. See Exercise 1.28.

1.5.2 k-th Root

The idea of Algorithm SqrtRem for the integer square root can be general-
ized to any power: if the current decomposition is m = m′βk+m′′βk−1+m′′′,
first compute a k-th root of m′, say m′ = sk+r, then divide rβ+m′′ by ksk−1

to get an approximation of the next root digit t, and correct it if needed. Un-
fortunately the computation of the remainder, which is easy for the square
root, involves O(k) terms for the k-th root, and this method may be slower
than Newton’s method with floating-point arithmetic (§4.2.3).

Similarly, Algorithm SqrtInt can be generalized to the k-th root (see
Algorithm RootInt).

Theorem 1.5.2 Algorithm RootInt terminates and returns ⌊m1/k⌋.

Proof. As long as u < s in step 6, the sequence of s-values is decreasing, thus
it suffices to consider what happens when u ≥ s. First it is easy so see that
u ≥ s implies m ≥ sk, because t ≥ ks thus (k−1)s+m/sk−1 ≥ ks. Consider
now the function f(t) := [(k − 1)t + m/tk−1]/k for t > 0; its derivative is
negative for t < m1/k, and positive for t > m1/k, thus f(t) ≥ f(m1/k) = m1/k.
This proves that s ≥ ⌊m1/k⌋. Together with s ≤ m1/k, this proves that
s = ⌊m1/k⌋ at the end of the algorithm.

30 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm 1.14 RootInt

Input: integers m ≥ 1, and k ≥ 2
Output: s = ⌊m1/k⌋
1: u← m ⊲ any value u ≥ ⌊m1/k⌋ works
2: repeat
3: s← u
4: t← (k − 1)s+ ⌊m/sk−1⌋
5: u← ⌊t/k⌋
6: until u ≥ s
7: return s.

Note that any initial value greater than or equal to ⌊m1/k⌋ works at step 1.
Incidentally, we have proved the correctness of Algorithm SqrtInt, which is
just the special case k = 2 of Algorithm RootInt.

1.5.3 Exact Root

When a k-th root is known to be exact, there is of course no need to com-
pute exactly the final remainder in “exact root” algorithms, which saves
some computation time. However, one has to check that the remainder is
sufficiently small that the computed root is correct.

When a root is known to be exact, one may also try to compute it starting
from the least significant bits, as for exact division. Indeed, if sk = m, then
sk = m mod βℓ for any integer ℓ. However, in the case of exact division,
the equation a = qb mod βℓ has only one solution q as soon as b is relatively
prime to β. Here, the equation sk = m mod βℓ may have several solutions,
so the lifting process is not unique. For example, x2 = 1 mod 23 has four
solutions 1, 3, 5, 7.

Suppose we have sk = m mod βℓ, and we want to lift to βℓ+1. This implies
(s+ tβℓ)k = m+m′βℓ mod βℓ+1 where 0 ≤ t,m′ < β. Thus

kt = m′ +
m− sk

βℓ
mod β.

This equation has a unique solution t when k is relatively prime to β. For
example, we can extract cube roots in this way for β a power of two. When
k is relatively prime to β, we can also compute the root simultaneously from
the most significant and least significant ends, as for exact division.

Modern Computer Arithmetic, §1.6 31

Unknown Exponent

Assume now that one wants to check if a given integer m is an exact power,
without knowing the corresponding exponent. For example, some primality
testing or factorization algorithms fail when given an exact power, so this has
to be checked first. Algorithm IsPower detects exact powers, and returns
the largest corresponding exponent (or 1 if the input is not an exact power).

Algorithm 1.15 IsPower
Input: a positive integer m
Output: k ≥ 2 when m is an exact k-th power, 1 otherwise
1: for k from ⌊lgm⌋ downto 2 do
2: if m is a k-th power then return k

3: return 1.

To quickly detect non-k-th powers at step 2, one may use modular algo-
rithms when k is relatively prime to the base β (see above).
Remark: in Algorithm IsPower, one can limit the search to prime expo-
nents k, but then the algorithm does not necessarily return the largest expo-
nent, and we might have to call it again. For example, taking m = 117649,
the modified algorithm first returns 3 because 117649 = 493, and when called
again with m = 49 it returns 2.

1.6 Greatest Common Divisor

Many algorithms for computing gcds may be found in the literature. We can
distinguish between the following (non-exclusive) types:

• left-to-right (MSB) versus right-to-left (LSB) algorithms: in the former
the actions depend on the most significant bits, while in the latter the
actions depend on the least significant bits;

• naive algorithms: these O(n2) algorithms consider one word of each
operand at a time, trying to guess from them the first quotients; we
count in this class algorithms considering double-size words, namely
Lehmer’s algorithm and Sorenson’s k-ary reduction in the left-to-right
and right-to-left cases respectively; algorithms not in this class consider

32 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

a number of words that depends on the input size n, and are often
subquadratic;

• subtraction-only algorithms: these algorithms trade divisions for sub-
tractions, at the cost of more iterations;

• plain versus extended algorithms: the former just compute the gcd of
the inputs, while the latter express the gcd as a linear combination of
the inputs.

1.6.1 Naive GCD

For completeness we mention Euclid’s algorithm for finding the gcd of two
non-negative integers u, v.

Algorithm 1.16 EuclidGcd

Input: u, v nonnegative integers (not both zero)
Output: gcd(u, v)
while v 6= 0 do

(u, v)← (v, u mod v)

return u.

Euclid’s algorithm is discussed in many textbooks, and we do not recom-
mend it in its simplest form, except for testing purposes. Indeed, it is usually
a slow way to compute a gcd. However, Euclid’s algorithm does show the
connection between gcds and continued fractions. If u/v has a regular con-
tinued fraction of the form

u/v = q0 +
1

q1+

1

q2+

1

q3+
· · · ,

then the quotients q0, q1, . . . are precisely the quotients u div v of the divisions
performed in Euclid’s algorithm. For more on continued fractions, see §4.6.

Double-Digit Gcd. A first improvement comes from Lehmer’s observa-
tion: the first few quotients in Euclid’s algorithm usually can be determined
from the most significant words of the inputs. This avoids expensive divi-
sions that give small quotients most of the time (see [143, §4.5.3]). Consider
for example a = 427 419 669 081 and b = 321 110 693 270 with 3-digit words.

Modern Computer Arithmetic, §1.6 33

The first quotients are 1, 3, 48, . . . Now if we consider the most significant
words, namely 427 and 321, we get the quotients 1, 3, 35, If we stop after
the first two quotients, we see that we can replace the initial inputs by a− b
and −3a+ 4b, which gives 106 308 975 811 and 2 183 765 837.

Lehmer’s algorithm determines cofactors from the most significant words
of the input integers. Those cofactors usually have size only half a word.
The DoubleDigitGcd algorithm — which should be called “double-word”
— uses the two most significant words instead, which gives cofactors t, u, v, w
of one full-word each, such that gcd(a, b) = gcd(ta + ub, va + wb). This is
optimal for the computation of the four products ta, ub, va, wb. With the
above example, if we consider 427 419 and 321 110, we find that the first five
quotients agree, so we can replace a, b by −148a+197b and 441a−587b, i.e.,
695 550 202 and 97 115 231.

Algorithm 1.17 DoubleDigitGcd

Input: a := an−1β
n−1 + · · ·+ a0, b := bm−1β

m−1 + · · ·+ b0
Output: gcd(a, b)
if b = 0 then return a
if m < 2 then return BasecaseGcd(a, b)
if a < b or n > m then return DoubleDigitGcd(b, a mod b)
(t, u, v, w)← HalfBezout(an−1β + an−2, bn−1β + bn−2)
return DoubleDigitGcd(|ta + ub|, |va+ wb|).

The subroutineHalfBezout takes as input two 2-word integers, performs
Euclid’s algorithm until the smallest remainder fits in one word, and returns
the corresponding matrix [t, u; v, w].

Binary Gcd. A better algorithm than Euclid’s, though also of O(n2) com-
plexity, is the binary algorithm. It differs from Euclid’s algorithm in two
ways: it consider least significant bits first, and it avoids divisions, except for
divisions by two (which can be implemented as shifts on a binary computer).
See Algorithm BinaryGcd. Note that the first three “while” loops can be
omitted if the inputs a and b are odd.

Sorenson’s k-ary reduction

The binary algorithm is based on the fact that if a and b are both odd,
then a− b is even, and we can remove a factor of two since gcd(a, b) is odd.

34 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm 1.18 BinaryGcd

Input: a, b > 0
Output: gcd(a, b)
t← 1
while a mod 2 = b mod 2 = 0 do

(t, a, b)← (2t, a/2, b/2)

while a mod 2 = 0 do
a← a/2

while b mod 2 = 0 do
b← b/2 ⊲ now a and b are both odd

while a 6= b do
(a, b)← (|a− b|,min(a, b))
a← a/2ν(a) ⊲ ν(a) is the 2-valuation of a

return ta.

Sorenson’s k-ary reduction is a generalization of that idea: given a and b
odd, we try to find small integers u, v such that ua−vb is divisible by a large
power of two.

Theorem 1.6.1 [227] If a, b > 0, m > 1 with gcd(a,m) = gcd(b,m) = 1,
there exist u, v, 0 < |u|, v <

√
m such that ua = vb mod m.

Algorithm ReducedRatMod finds such a pair (u, v); it is a simple variation
of the extended Euclidean algorithm; indeed, the ui are quotients in the
continued fraction expansion of c/m.

Whenm is a prime power, the inversion 1/b mod m at step 1 of Algorithm
ReducedRatMod can be performed efficiently using Hensel lifting (§2.5).

Given two integers a, b of say n words, Algorithm ReducedRatMod
with m = β2 returns two integers u, v such that vb− ua is a multiple of β2.
Since u, v have at most one word each, a′ = (vb− ua)/β2 has at most n− 1
words — plus possibly one bit — therefore with b′ = b mod a′ we obtain
gcd(a, b) = gcd(a′, b′), where both a′ and b′ have about one word less than
max(a, b). This gives an LSB variant of the double-digit (MSB) algorithm.

Modern Computer Arithmetic, §1.6 35

Algorithm 1.19 ReducedRatMod

Input: a, b > 0, m > 1 with gcd(a,m) = gcd(b,m) = 1
Output: (u, v) such that 0 < |u|, v <

√
m and ua = vb mod m

1: c← a/b mod m
2: (u1, v1)← (0, m)
3: (u2, v2)← (1, c)
4: while v2 ≥

√
m do

5: q ← ⌊v1/v2⌋
6: (u1, u2)← (u2, u1 − qu2)
7: (v1, v2)← (v2, v1 − qv2)

8: return (u2, v2).

1.6.2 Extended GCD

Algorithm ExtendedGcd solves the extended greatest common divisor prob-
lem: given two integers a and b, it computes their gcd g, and also two integers
u and v (called Bézout coefficients or sometimes cofactors ormultipliers) such
that g = ua+ vb.

Algorithm 1.20 ExtendedGcd

Input: positive integers a and b
Output: integers (g, u, v) such that g = gcd(a, b) = ua+ vb
1: (u, w)← (1, 0)
2: (v, x)← (0, 1)
3: while b 6= 0 do
4: (q, r)← DivRem(a, b)
5: (a, b)← (b, r)
6: (u, w)← (w, u− qw)
7: (v, x)← (x, v − qx)

8: return (a, u, v).

If a0 and b0 are the input numbers, and a, b the current values, the follow-
ing invariants hold at the start of each iteration of the while loop and after
the while loop: a = ua0 + vb0, and b = wa0 + xb0. (See Exercise 1.30 for a
bound on the cofactor u.)

An important special case is modular inversion (see Chapter 2): given an
integer n, one wants to compute 1/a mod n for a relatively prime to n. One

36 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

then simply runs Algorithm ExtendedGcd with input a and b = n: this
yields u and v with ua+ vn = 1, thus 1/a = u mod n. Since v is not needed
here, we can simply avoid computing v and x, by removing steps 2 and 7.

It may also be worthwhile to compute only u in the general case, as the
cofactor v can be recovered from v = (g − ua)/b, this division being exact
(see §1.4.5).

All known algorithms for subquadratic gcd rely on an extended gcd sub-
routine which is called recursively, so we discuss the subquadratic extended
gcd in the next section.

1.6.3 Half Binary GCD, Divide and Conquer GCD

Designing a subquadratic integer gcd algorithm that is both mathematically
correct and efficient in practice is a challenging problem.

A first remark is that, starting from n-bit inputs, there are O(n) terms in
the remainder sequence r0 = a, r1 = b, . . . , ri+1 = ri−1 mod ri, . . . , and the
size of ri decreases linearly with i. Thus, computing all the partial remainders
ri leads to a quadratic cost, and a fast algorithm should avoid this.

However, the partial quotients qi = ri−1 div ri are usually small: the main
idea is thus to compute them without computing the partial remainders. This
can be seen as a generalization of the DoubleDigitGcd algorithm: instead
of considering a fixed base β, adjust it so that the inputs have four “big
words”. The cofactor-matrix returned by the HalfBezout subroutine will
then reduce the input size to about 3n/4. A second call with the remaining
two most significant “big words” of the new remainders will reduce their size
to half the input size. See Exercise 1.31.

The same method applies in the LSB case, and is in fact simpler to turn
into a correct algorithm. In this case, the terms ri form a binary remainder
sequence, which corresponds to the iteration of theBinaryDivide algorithm,
with starting values a, b.

The integer q is the binary quotient of a and b, and r is the binary re-
mainder.

This right-to-left division defines a right-to-left remainder sequence a0 =
a, a1 = b, . . . , where ai+1 = BinaryRemainder (ai−1, ai), and ν(ai+1) <
ν(ai). It can be shown that this sequence eventually reaches ai+1 = 0 for
some index i. Assuming ν(a) = 0, then gcd(a, b) is the odd part of ai.
Indeed, in Algorithm BinaryDivide, if some odd prime divides both a and
b, it certainly divides 2−jb which is an integer, and thus it divides a+ q2−jb.

Modern Computer Arithmetic, §1.6 37

Algorithm 1.21 BinaryDivide

Input: a, b ∈ Z with ν(b)− ν(a) = j > 0
Output: |q| < 2j and r = a+ q2−jb such that ν(b) < ν(r)
b′ ← 2−jb
q ← −a/b′ mod 2j+1

if q ≥ 2j then q ← q − 2j+1

return q, r = a + q2−jb.

Conversely, if some odd prime divides both b and r, it divides also 2−jb, thus
it divides a = r − q2−jb; this shows that no spurious factor appears, unlike
in some other gcd algorithms.

Example: let a = a0 = 935 and b = a1 = 714, so ν(b) = ν(a)+1. Algorithm
BinaryDivide computes b′ = 357, q = 1, and a2 = a + q2−jb = 1292. The
next step gives a3 = 1360, then a4 = 1632, a5 = 2176, a6 = 0. Since 2176 =
27 · 17, we conclude that the gcd of 935 and 714 is 17. Note that the binary
remainder sequence might contain negative terms and terms larger than a, b.
For example, starting from a = 19 and b = 2, we get 19, 2, 20,−8, 16, 0.

An asymptotically fast GCD algorithm with complexity O(M(n) logn)
can be constructed with Algorithm HalfBinaryGcd.

Theorem 1.6.2 Given a, b ∈ Z with ν(a) = 0 and ν(b) > 0, and an integer
k ≥ 0, Algorithm HalfBinaryGcd returns an integer 0 ≤ j ≤ k and a
matrix R such that, if c = 2−2j(R1,1a +R1,2b) and d = 2−2j(R2,1a+R2,2b):

1. c and d are integers with ν(c) = 0 and ν(d) > 0;

2. c∗ = 2jc and d∗ = 2jd are two consecutive terms from the binary re-
mainder sequence of a, b with ν(c∗) ≤ k < ν(d∗).

Proof. We prove the theorem by induction on k. If k = 0, the algorithm
returns j = 0 and the identity matrix, thus we have c = a and d = b, and
the statement is true. Now suppose k > 0, and assume that the theorem is
true up to k − 1.

The first recursive call uses k1 < k, since k1 = ⌊k/2⌋ < k. After step 5,
by induction a′1 = 2−2j1(R1,1a1 + R1,2b1) and b′1 = 2−2j1(R2,1a1 + R2,2b1) are
integers with ν(a′1) = 0 < ν(b′1), and 2j1a′1, 2

j1b′1 are two consecutive terms

38 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm 1.22 HalfBinaryGcd

Input: a, b ∈ Z with 0 = ν(a) < ν(b), a non-negative integer k
Output: an integer j and a 2× 2 matrix R satisfying Theorem 1.6.2
1: if ν(b) > k then

2: return 0,

(
1 0
0 1

)

3: k1 ← ⌊k/2⌋
4: a1 ← a mod 22k1+1, b1 ← b mod 22k1+1

5: j1, R← HalfBinaryGcd(a1, b1, k1)
6: a′ ← 2−2j1(R1,1a+R1,2b), b′ ← 2−2j1(R2,1a+R2,2b)
7: j0 ← ν(b′)
8: if j0 + j1 > k then
9: return j1, R

10: q, r← BinaryDivide(a′, b′)
11: k2 ← k − (j0 + j1)
12: a2 ← b′/2j0 mod 22k2+1, b2 ← r/2j0 mod 22k2+1

13: j2, S ← HalfBinaryGcd(a2, b2, k2)

14: return j1 + j0 + j2, S ×
(

0 2j0

2j0 q

)
× R.

Modern Computer Arithmetic, §1.6 39

from the binary remainder sequence of a1, b1. Lemma 7 of [209] says that the
quotients of the remainder sequence of a, b coincide with those of a1, b1 up
to 2j1a′ and 2j1b′. This proves that 2j1a′, 2j1b′ are two consecutive terms of
the remainder sequence of a, b. Since a and a1 differ by a multiple of 22k1+1,
a′ and a′1 differ by a multiple of 22k1+1−2j1 ≥ 2 since j1 ≤ k1 by induction.
It follows that ν(a′) = 0. Similarly, b′ and b′1 differ by a multiple of 2, thus
j0 = ν(b′) > 0.

The second recursive call uses k2 < k, since by induction j1 ≥ 0 and we
just showed j0 > 0. It easily follows that j1 + j0 + j2 > 0, and thus j ≥ 0.
If we exit at step 9, we have j = j1 ≤ k1 < k. Otherwise j = j1 + j0 + j2 =
k − k2 + j2 ≤ k by induction.

If j0 + j1 > k, we have ν(2j1b′) = j0 + j1 > k, we exit the algorithm and
the statement holds. Now assume j0 + j1 ≤ k. We compute an extra term
r of the remainder sequence from a′, b′, which up to multiplication by 2j1, is
an extra term of the remainder sequence of a, b. Since r = a′ + q2−j0b′, we
have (

b′

r

)
= 2−j0

(
0 2j0

2j0 q

)(
a′

b′

)
.

The new terms of the remainder sequence are b′/2j0 and r/2j0, adjusted
so that ν(b′/2j0) = 0. The same argument as above holds for the second
recursive call, which stops when the 2-valuation of the sequence starting from
a2, b2 exceeds k2; this corresponds to a 2-valuation larger than j0+j1+k2 = k
for the a, b remainder sequence.

Given two n-bit integers a and b, and k = n/2, HalfBinaryGcd yields
two consecutive elements c∗, d∗ of their binary remainder sequence with bit-
size about n/2 (for their odd part).
Example: let a = 1 889 826 700 059 and b = 421 872 857 844, with k = 20.
The first recursive call with a1 = 1 243 931, b1 = 1 372 916, k1 = 10 gives
j1 = 8 and R =

(

352 280
260 393

)

, which corresponds to a′ = 11 952 871 683 and

b′ = 10 027 328 112, with j0 = 4. The binary division yields the new term
r = 8 819 331 648, and we have k2 = 8, a2 = 52 775, b2 = 50 468. The second
recursive call gives j2 = 8 and S =

(

64 272
212 −123

)

, which finally gives j = 20

and the matrix
(

1 444 544 1 086 512
349 084 1 023 711

)

, which corresponds to the remainder terms

r8 = 2 899 749 · 2j, r9 = 992 790 · 2j. With the same a, b values, but with
k = 41, which corresponds to the bit-size of a, we get as final values of the
algorithm r15 = 3 · 241 and r16 = 0, which proves that gcd(a, b) = 3.

40 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Let H(n) be the complexity of HalfBinaryGcd for inputs of n bits and
k = n/2; a1 and b1 have ∼n/2 bits, the coefficients of R have ∼n/4 bits, and
a′, b′ have ∼3n/4 bits. The remainders a2, b2 have ∼n/2 bits, the coefficients
of S have ∼ n/4 bits, and the final values c, d have ∼ n/2 bits. The main
costs are the matrix-vector product at step 6, and the final matrix-matrix
product. We obtain H(n) ∼ 2H(n/2)+4M(n/4, n)+7M(n/4), assuming we
use Strassen’s algorithm to multiply two 2×2 matrices with 7 scalar products,
i.e.,H(n) ∼ 2H(n/2)+17M(n/4), assuming that we compute eachM(n/4, n)
product with a single FFT transform of width 5n/4, which gives cost about
M(5n/8) ∼ 0.625M(n) in the FFT range. Thus H(n) = O(M(n) logn).

For the plain gcd, we call HalfBinaryGcd with k = n, and instead
of computing the final matrix product, we multiply 2−2j2S by (b′, r) — the
components have ∼n/2 bits — to obtain the final c, d values. The first
recursive call has a1, b1 of size n with k1 ≈ n/2, and corresponds to H(n);
the matrix R and a′, b′ have n/2 bits, and k2 ≈ n/2, thus the second recursive
call corresponds to a plain gcd of size n/2. The cost G(n) satisfies G(n) =
H(n) + G(n/2) + 4M(n/2, n) + 4M(n/2) ∼ H(n) + G(n/2) + 10M(n/2).
Thus G(n) = O(M(n) logn).

An application of the half gcd per se in the MSB case is the rational
reconstruction problem. Assume one wants to compute a rational p/q where
p and q are known to be bounded by some constant c. Instead of comput-
ing with rationals, one may perform all computations modulo some integer
n > c2. Hence one will end up with p/q = m mod n, and the problem is
now to find the unknown p and q from the known integer m. To do this, one
starts an extended gcd from m and n, and one stops as soon as the current
a and u values — as in ExtendedGcd — are smaller than c: since we have
a = um + vn, this gives m = a/u mod n. This is exactly what is called a
half-gcd; a subquadratic version in the LSB case is given above.

1.7 Base Conversion

Since computers usually work with binary numbers, and human prefer deci-
mal representations, input/output base conversions are needed. In a typical
computation, there are only a few conversions, compared to the total num-
ber of operations, so optimizing conversions is less important than optimizing
other aspects of the computation. However, when working with huge num-
bers, naive conversion algorithms may slow down the whole computation.

Modern Computer Arithmetic, §1.7 41

In this section we consider that numbers are represented internally in base
β — usually a power of 2 — and externally in base B — say a power of 10.
When both bases are commensurable, i.e., both are powers of a common inte-
ger, like β = 8 and B = 16, conversions of n-digit numbers can be performed
in O(n) operations. We assume here that β and B are not commensurable.

One might think that only one algorithm is needed, since input and output
are symmetric by exchanging bases β and B. Unfortunately, this is not true,
since computations are done only in base β (see Exercise 1.37).

1.7.1 Quadratic Algorithms

Algorithms IntegerInput and IntegerOutput respectively read and write
n-word integers, both with a complexity of O(n2).

Algorithm 1.23 IntegerInput

Input: a string S = sm−1 . . . s1s0 of digits in base B
Output: the value A in base β of the integer represented by S
A← 0
for i from m− 1 downto 0 do

A← BA + val(si) ⊲ val(si) is the value of si in base β

return A.

Algorithm 1.24 IntegerOutput

Input: A =
∑n−1

0 aiβ
i > 0

Output: a string S of characters, representing A in base B
m← 0
while A 6= 0 do

sm ← char(A mod B) ⊲ sm: character corresponding to A mod B
A← A div B
m← m+ 1

return S = sm−1 . . . s1s0.

1.7.2 Subquadratic Algorithms

Fast conversions routines are obtained using a “divide and conquer” strategy.
Given two strings s and t, we let s || t denote the concatenation of s and t.

42 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

For integer input, if the given string decomposes as S = Shi ||Slo where Slo

has k digits in base B, then

Input(S,B) = Input(Shi, B)Bk + Input(Slo, B),

where Input(S,B) is the value obtained when reading the string S in the ex-
ternal base B. Algorithm FastIntegerInput shows one way to implement
this: if the output A has n words, Algorithm FastIntegerInput has com-

Algorithm 1.25 FastIntegerInput

Input: a string S = sm−1 . . . s1s0 of digits in base B
Output: the value A of the integer represented by S
ℓ← [val(s0), val(s1), . . . , val(sm−1)]
(b, k)← (B,m) ⊲ Invariant: ℓ has k elements ℓ0, . . . , ℓk−1

while k > 1 do
if k even then ℓ← [ℓ0 + bℓ1, ℓ2 + bℓ3, . . . , ℓk−2 + bℓk−1]

else ℓ← [ℓ0 + bℓ1, ℓ2 + bℓ3, . . . , ℓk−1]
(b, k)← (b2, ⌈k/2⌉)

return ℓ0.

plexity O(M(n) logn), more precisely ∼M(n/4) lg n for n a power of two in
the FFT range (see Exercise 1.34).

For integer output, a similar algorithm can be designed, replacing multi-
plications by divisions. Namely, if A = AhiB

k + Alo, then

Output(A,B) = Output(Ahi, B) ||Output(Alo, B),

where Output(A,B) is the string resulting from writing the integer A in the
external base B, and it is assumed that Output(Alo, B) has exactly k digits,
after possibly padding with leading zeros.

If the input A has n words, Algorithm FastIntegerOutput has com-
plexity O(M(n) logn), more precisely ∼D(n/4) lgn for n a power of two
in the FFT range, where D(n) is the cost of dividing a 2n-word integer by
an n-word integer. Depending on the cost ratio between multiplication and
division, integer output may thus be from 2 to 5 times slower than integer
input; see however Exercise 1.35.

Modern Computer Arithmetic, §1.8 43

Algorithm 1.26 FastIntegerOutput

Input: A =
∑n−1

0 aiβ
i

Output: a string S of characters, representing A in base B
if A < B then

return char(A)
else

find k such that B2k−2 ≤ A < B2k

(Q,R)← DivRem(A,Bk)
r ← FastIntegerOutput(R)
return FastIntegerOutput(Q) || 0k−len(r) || r.

1.8 Exercises

Exercise 1.1 Extend the Kronecker-Schönhage trick mentioned at the beginning
of §1.3 to negative coefficients, assuming the coefficients are in the range [−ρ, ρ].

Exercise 1.2 (Harvey [114]) For multiplying two polynomials of degree less than
n, with non-negative integer coefficients bounded above by ρ, the Kronecker-
Schönhage trick performs one integer multiplication of size about 2n lg ρ, assuming
n is small compared to ρ. Show that it is possible to perform two integer multipli-
cations of size n lg ρ instead, and even four integer multiplications of size (n/2) lg ρ.

Exercise 1.3 Assume your processor provides an instruction fmaa(a, b, c, d) re-
turning h, ℓ such that ab + c + d = hβ + ℓ where 0 ≤ a, b, c, d, ℓ, h < β. Rewrite
Algorithm BasecaseMultiply using fmaa.

Exercise 1.4 (Harvey, Khachatrian et al.[139]) For A =
∑n−1

i=0 aiβ
i and B =∑n−1

j=0 biβ
i, prove the formula:

AB =

n−1∑

i=1

i−1∑

j=0

(ai + aj)(bi + bj)β
i+j + 2

n−1∑

i=0

aibiβ
2i −

n−1∑

i=0

βi
n−1∑

j=0

ajbjβ
j.

Deduce a new algorithm for schoolbook multiplication.

Exercise 1.5 (Hanrot) Prove that the number K(n) of word products (as de-
fined in the proof of Thm. 1.3.2) in Karatsuba’s algorithm is non-decreasing, pro-
vided n0 = 2. Plot the graph of K(n)/nlg 3 with a logarithmic scale for n, for
27 ≤ n ≤ 210, and find experimentally where the maximum appears.

44 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Exercise 1.6 (Ryde) Assume the basecase multiply costs M(n) = an2+bn, and
that Karatsuba’s algorithm costs K(n) = 3K(n/2) + cn. Show that dividing a by
two increases the Karatsuba threshold n0 by a factor of two, and on the contrary
decreasing b and c decreases n0.

Exercise 1.7 (Maeder [158], Thomé [216]) Show that an auxiliary memory of
2n+ o(n) words is enough to implement Karatsuba’s algorithm in-place, for an n-
word×n-word product. In the polynomial case, prove that an auxiliary space of n
coefficients is enough, in addition to the n+n coefficients of the input polynomials,
and the 2n − 1 coefficients of the product. [You can use the 2n result words, but
must not destroy the n+ n input words.]

Exercise 1.8 (Roche [191]) If Exercise 1.7 was too easy for you, design a Karat-
suba-like algorithm using only O(log n) extra space (you are allowed to read and
write in the 2n output words, but the n+ n input words are read-only).

Exercise 1.9 (Quercia, McLaughlin)Modify AlgorithmKaratsubaMultiply
to use only ∼7n/2 additions/subtractions. [Hint: decompose each of C0, C1 and
C2 into two parts.]

Exercise 1.10 Design an in-place version of KaratsubaMultiply (see Exer-
cise 1.7) that accumulates the result in c0, . . . , cn−1, and returns a carry bit.

Exercise 1.11 (Vuillemin) Design an algorithm to multiply a2x
2 + a1x+ a0 by

b1x + b0 using 4 multiplications. Can you extend it to a 6 × 6 product using 16
multiplications?

Exercise 1.12 (Weimerskirch, Paar) Extend the Karatsuba trick to compute
an n × n product in n(n + 1)/2 multiplications. For which n does this win over
the classical Karatsuba algorithm?

Exercise 1.13 (Hanrot) In Algorithm OddEvenKaratsuba, if both m and n
are odd, one combines the larger parts A0 and B0 together, and the smaller parts
A1 and B1 together. Find a way to get instead:

K(m,n) = K(⌈m/2⌉, ⌊n/2⌋) +K(⌊m/2⌋, ⌈n/2⌉) +K(⌈m/2⌉, ⌈n/2⌉).

Exercise 1.14 Prove that if 5 integer evaluation points are used for Toom-Cook
3-way (§1.3.3), the division by (a multiple of) 3 can not be avoided. Does this
remain true if only 4 integer points are used together with ∞?

Modern Computer Arithmetic, §1.8 45

Exercise 1.15 (Quercia, Harvey) In Toom-Cook 3-way (§1.3.3), take as eval-
uation point 2w instead of 2, where w is the number of bits per word (usually
w = 32 or 64). Which division is then needed? Similarly for the evaluation point
2w/2.

Exercise 1.16 For an integer k ≥ 2 and multiplication of two numbers of size kn
and n, show that the trivial strategy which performs k multiplications, each n×n,
is not the best possible in the FFT range.

Exercise 1.17 (Karatsuba, Zuras [236]) Assuming the multiplication has su-
perlinear cost, show that the speedup of squaring with respect to multiplication
can not significantly exceed 2.

Exercise 1.18 (Thomé, Quercia) Consider two sets A = {a, b, c, . . .} and U =
{u, v, w, . . .}, and a set X = {x, y, z, . . .} of sums of products of elements of A
and U (assumed to be in some field F). We can ask “what is the least number of
multiplies required to compute all elements of X?”. In general, this is a difficult
problem, related to the problem of computing tensor rank, which is NP-complete
(see for example H̊astad [119] and the book by Bürgisser et al. [59]). Special
cases include integer/polynomial multiplication, the middle product, and matrix
multiplication (for matrices of fixed size). As a specific example, can we compute
x = au + cw, y = av + bw, z = bu + cv in fewer than 6 multiplies? Similarly for
x = au− cw, y = av − bw, z = bu− cv.

Exercise 1.19 In Algorithm BasecaseDivRem (§1.4.1), prove that q∗j ≤ β + 1.
Can this bound be reached? In the case q∗j ≥ β, prove that the while-loop at steps
6-8 is executed at most once. Prove that the same holds for Svoboda’s algorithm,
i.e., that A ≥ 0 after step 8 of Algorithm SvobodaDivision (§1.4.2).

Exercise 1.20 (Granlund, Möller) In AlgorithmBasecaseDivRem, estimate
the probability that A < 0 is true at step 6, assuming the remainder rj from
the division of an+jβ + an+j−1 by bn−1 is uniformly distributed in [0, bn−1 − 1],
A mod βn+j−1 is uniformly distributed in [0, βn+j−1 − 1], and B mod βn−1 is uni-
formly distributed in [0, βn−1−1]. Then replace the computation of q∗j by a division
of the three most significant words of A by the two most significant words of B.
Prove the algorithm is still correct. What is the maximal number of corrections,
and the probability that A < 0?

Exercise 1.21 (Montgomery [172]) Let 0 < b < β, and 0 ≤ a4, . . . , a0 < β.
Prove that a4(β

4 mod b) + · · · + a1(β mod b) + a0 < β2, provided b < β/3. Use
this fact to design an efficient algorithm dividing A = an−1β

n−1 + · · · + a0 by b.
Does the algorithm extend to division by the least significant digits?

46 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Exercise 1.22 In Algorithm RecursiveDivRem, find inputs that require 1, 2,
3 or 4 corrections in step 8. [Hint: consider β = 2.] Prove that when n = m and
A < βm(B + 1), at most two corrections occur.

Exercise 1.23 Find the complexity of Algorithm RecursiveDivRem in the
FFT range.

Exercise 1.24 Consider the division of A of kn words by B of n words, with
integer k ≥ 3, and the alternate strategy that consists of extending the divisor with
zeros so that it has half the size of the dividend. Show that this is always slower
than Algorithm UnbalancedDivision [assuming that division has superlinear
cost].

Exercise 1.25 An important special base of division is when the divisor is of the
form bk. For example, this is useful for an integer output routine (§1.7). Can one
design a fast algorithm for this case?

Exercise 1.26 (Sedoglavic) Does the Kronecker-Schönhage trick to reduce poly-
nomial multiplication to integer multiplication (§1.3) also work — in an efficient
way — for division? Assume that you want to divide a degree-2n polynomial A(x)
by a monic degree-n polynomial B(x), both polynomials having integer coefficients
bounded by ρ.

Exercise 1.27 Design an algorithm that performs an exact division of a 4n-bit
integer by a 2n-bit integer, with a quotient of 2n bits, using the idea mentioned
in the last paragraph of §1.4.5. Prove that your algorithm is correct.

Exercise 1.28 Improve the initial speed of convergence of Algorithm SqrtInt
(§1.5.1) by using a better starting approximation at step 1. Your approximation
should be in the interval [⌊√m⌋, ⌈2√m⌉].

Exercise 1.29 (Luschny) Devise a fast algorithm for computing the binomial
coefficient

C(n, k) =

(
n

k

)
=

n!

k!(n − k)!

for integers n, k, 0 ≤ k ≤ n. The algorithm should use exact integer arithmetic
and compute the exact answer.

Exercise 1.30 (Shoup) Show that in Algorithm ExtendedGcd, if a ≥ b > 0,
and g = gcd(a, b), then the cofactor u satisfies −b/(2g) < u ≤ b/(2g).

Modern Computer Arithmetic, §1.9 47

Exercise 1.31 (a) Devise a subquadratic GCD algorithm HalfGcd along the
lines outlined in the first three paragraphs of §1.6.3 (most-significant bits first).
The input is two integers a ≥ b > 0. The output is a 2× 2 matrix R and integers
a′, b′ such that [a′ b′]t = R[a b]t. If the inputs have size n bits, then the elements
of R should have at most n/2 + O(1) bits, and the outputs a′, b′ should have at
most 3n/4+O(1) bits. (b) Construct a plain GCD algorithm which calls HalfGcd
until the arguments are small enough to call a naive algorithm. (c) Compare this
approach with the use of HalfBinaryGcd in §1.6.3.

Exercise 1.32 (Galbraith, Schönhage, Stehlé) The Jacobi symbol (a|b) of
an integer a and a positive odd integer b satisfies (a|b) = (a mod b|b), the law of
quadratic reciprocity (a|b)(b|a) = (−1)(a−1)(b−1)/4 for a odd and positive,
together with (−1|b) = (−1)(b−1)/2, and (2|b) = (−1)(b2−1)/8. This looks very
much like the gcd recurrence: gcd(a, b) = gcd(a mod b, b) and gcd(a, b) = gcd(b, a).
Can you design an O(M(n) log n) algorithm to compute the Jacobi symbol of two
n-bit integers?

Exercise 1.33 Show that B and β are commensurable, in the sense defined in
§1.7, iff ln(B)/ ln(β) ∈ Q.

Exercise 1.34 Find a formula T (n) for the asymptotic complexity of Algorithm
FastIntegerInput when n = 2k (§1.7.2). Show that, for general n, your formula
is within a factor of two of T (n). [Hint: consider the binary expansion of n.]

Exercise 1.35 Show that the integer output routine can be made as fast (asymp-
totically) as the integer input routine FastIntegerInput. Do timing experiments
with your favorite multiple-precision software. [Hint: use D. Bernstein’s scaled
remainder tree [21] and the middle product.]

Exercise 1.36 If the internal base β and the external base B share a nontrivial
common divisor — as in the case β = 2ℓ and B = 10 — show how one can exploit
this to speed up the subquadratic input and output routines.

Exercise 1.37 Assume you are given two n-digit integers in base ten, but you
have fast arithmetic only in base two. Can you multiply the integers in time
O(M(n))?

48 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

1.9 Notes and References

“On-line” (as opposed to “off-line”) algorithms are considered in many books and
papers, see for example the book by Borodin and El-Yaniv [33]. “Relaxed” algo-
rithms were introduced by van der Hoeven. For references and a discussion of the
differences between “lazy”, “zealous” and “relaxed” algorithms, see [124].

An example of an implementation with “guard bits” to avoid overflow problems
in integer addition (§1.2) is the block-wise modular arithmetic of Lenstra and Dixon
on the MasPar [87]. They used β = 230 with 32-bit words.

The observation that polynomial multiplication reduces to integer multiplica-
tion is due to both Kronecker and Schönhage, which explains the name “Kronecker-
Schönhage trick”. More precisely, Kronecker [147, pp. 941–942] (also [148, §4])
reduced the irreducibility test for factorization of multivariate polynomials to the
univariate case, and Schönhage [197] reduced the univariate case to the integer case.
The Kronecker-Schönhage trick is improved in Harvey [114] (see Exercise 1.2), and
some nice applications of it are given in Steel [207].

Karatsuba’s algorithm was first published in [136]. Very little is known about
its average complexity. What is clear is that no simple asymptotic equivalent can
be obtained, since the ratio K(n)/nα does not converge (see Exercise 1.5).

Andrei Toom[218] discovered the class of Toom-Cook algorithms, and they were
discussed by Stephen Cook in his thesis [76, pp. 51–77]. A very good description of
these algorithms can be found in the book by Crandall and Pomerance [81, §9.5.1].
In particular it describes how to generate the evaluation and interpolation formulæ
symbolically. Zuras [236] considers the 4-way and 5-way variants, together with
squaring. Bodrato and Zanoni [31] show that the Toom-Cook 3-way interpolation
scheme of §1.3.3 is close to optimal for the points 0, 1,−1, 2,∞; they also exhibit
efficient 4-way and 5-way schemes. Bodrato and Zanoni also introduced the Toom-
2.5 and Toom-3.5 notations for what we call Toom-(3, 2) and Toom-(4, 3), these
algorithms being useful for unbalanced multiplication using a different number
of pieces. They noticed that Toom-(4, 2) only differs from Toom 3-way in the
evaluation phase, thus most of the implementation can be shared.

The Schönhage-Strassen algorithm first appeared in [200], and is described in
§2.3.3. Algorithms using floating-point complex numbers are discussed in Knuth’s
classic [143, §4.3.3.C]. See also §3.3.1.

The odd-even scheme is described in Hanrot and Zimmermann [112], and was
independently discovered by Andreas Enge. The asymmetric squaring formula
given in §1.3.6 was invented by Chung and Hasan (see their paper [66] for other
asymmetric formulæ). Exercise 1.4 was suggested by David Harvey, who indepen-
dently discovered the algorithm of Khachatrian et al. [139].

See Lefèvre [153] for a comparison of different algorithms for the problem of

Modern Computer Arithmetic, §1.9 49

multiplication by an integer constant.
Svoboda’s algorithm was introduced in [212]. The exact division algorithm

starting from least significant bits is due to Jebelean [130]. Jebelean and Krandick
invented the “bidirectional” algorithm [145]. The Karp-Markstein trick to speed
up Newton’s iteration (or Hensel lifting over p-adic numbers) is described in [138].
The “recursive division” of §1.4.3 is from Burnikel and Ziegler [60], although earlier
but not-so-detailed ideas can be found in Jebelean [132], and even earlier in Moenck
and Borodin [167]. The definition of Hensel’s division used here is due to Shand
and Vuillemin [202], who also point out the duality with Euclidean division.

Algorithm SqrtRem (§1.5.1) was first described in Zimmermann [235], and
proved correct in Bertot et al. [29]. Algorithm SqrtInt is described in [73]; its
generalization to k-th roots (Algorithm RootInt) is due to Keith Briggs. The
detection of exact powers is discussed in Bernstein, Lenstra and Pila [23] and
earlier in Bernstein [17] and Cohen [73]. It is necessary, for example, in the AKS
primality test [2].

The classical (quadratic) Euclidean algorithm has been considered by many
authors — a good reference is Knuth [143]. The Gauss-Kuz’min theorem2 gives
the distribution of quotients in the regular continued fraction of almost all real
numbers, and hence is a good guide to the distribution of quotients in the Euclidean
algorithm for large, random inputs. Lehmer’s original algorithm is described in
[155]. The binary gcd is almost as old as the classical Euclidean algorithm —
Knuth [143] has traced it back to a first-century AD Chinese text Chiu Chang
Suan Shu (see also Mikami [166]). It was rediscovered several times in the 20th
century, and it is usually attributed to Stein [210]. The binary gcd has been
analysed by Brent [44, 50], Knuth [143], Maze [160] and Vallée [222]. A parallel
(systolic) version that runs in O(n) time using O(n) processors was given by Brent
and Kung [53].

The double-digit gcd is due to Jebelean [131]. The k-ary gcd reduction is due
to Sorenson [206], and was improved and implemented in GNU MP by Weber.
Weber also invented Algorithm ReducedRatMod [227], inspired by previous
work of Wang.

The first subquadratic gcd algorithm was published by Knuth [142], but his
complexity analysis was suboptimal — he gave O(n log5 n log log n). The correct
complexity O(n log2 n log log n) was given by Schönhage [196]; for this reason the
algorithm is sometimes called the Knuth-Schönhage algorithm. A description for
the polynomial case can be found in Aho, Hopcroft and Ullman [3], and a detailed
(but incorrect) description for the integer case in Yap [233]. The subquadratic
binary gcd given in §1.6.3 is due to Stehlé and Zimmermann [209]. Möller [169]

2According to the Gauss-Kuz’min theorem [140], the probability of a quotient q ∈ N∗

is lg(1 + 1/q)− lg(1 + 1/(q + 1)).

50 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

compares various subquadratic algorithms, and gives a nice algorithm without
“repair steps”.

Several authors mention an O(n log2 n log log n) algorithm for the computation
of the Jacobi symbol [89, 201]. The earliest reference that we know is a paper by
Bach [8], which gives the basic idea (due to Gauss [101, p. 509]). Details are given
in the book by Bach and Shallit [9, Solution of Exercise 5.52], where the algorithm
is said to be “folklore”, with the ideas going back to Bachmann [10] and Gauss.
The existence of such an algorithm is mentioned in Schönhage’s book [199, §7.2.3],
but without details. See also Exercise 1.32.

Chapter 2

Modular Arithmetic and the
FFT

In this chapter our main topic is modular arithmetic, i.e., how
to compute efficiently modulo a given integer N . In most appli-
cations, the modulus N is fixed, and special-purpose algorithms
benefit from some precomputations, depending only on N , to
speed up arithmetic modulo N .
There is an overlap between Chapter 1 and this chapter. For
example, integer division and modular multiplication are closely
related. In Chapter 1 we present algorithms where no (or only
a few) precomputations with respect to the modulus N are per-
formed. In this chapter we consider algorithms which benefit
from such precomputations.
Unless explicitly stated, we consider that the modulus N occupies
n words in the word-base β, i.e., βn−1 ≤ N < βn.

2.1 Representation

We consider in this section the different possible representations of residues
modulo N . As in Chapter 1, we consider mainly dense representations.

2.1.1 Classical Representation

The classical representation stores a residue (class) a as an integer 0 ≤ a < N .
Residues are thus always fully reduced, i.e., in canonical form.

52 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Another non-redundant form consists in choosing a symmetric represen-
tation, say −N/2 ≤ a < N/2. This form might save some reductions in
additions or subtractions (see §2.2). Negative numbers might be stored ei-
ther with a separate sign (sign-magnitude representation) or with a two’s-
complement representation.

Since N takes n words in base β, an alternative redundant representation
chooses 0 ≤ a < βn to represent a residue class. If the underlying arithmetic
is word-based, this will yield no slowdown compared to the canonical form.
An advantage of this representation is that, when adding two residues, it
suffices to compare their sum to βn in order to decide whether the sum has
to be reduced, and the result of this comparison is simply given by the carry
bit of the addition (see Algorithm IntegerAddition in §1.2), instead of by
comparing the sum with N . However, in the case that the sum has to be
reduced, one or more further comparisons are needed.

2.1.2 Montgomery’s Form

Montgomery’s form is another representation widely used when several mod-
ular operations have to be performed modulo the same integer N (additions,
subtractions, modular multiplications). It implies a small overhead to con-
vert — if needed — from the classical representation to Montgomery’s and
vice-versa, but this overhead is often more than compensated by the speedup
obtained in the modular multiplication.

The main idea is to represent a residue a by a′ = aR mod N , where R =
βn, and N takes n words in base β. Thus Montgomery is not concerned with
the physical representation of a residue class, but with themeaning associated
to a given physical representation. (As a consequence, the different choices
mentioned above for the physical representation are all possible.) Addition
and subtraction are unchanged, but (modular) multiplication translates to a
different, much simpler, algorithm (§2.4.2).

In most applications using Montgomery’s form, all inputs are first con-
verted to Montgomery’s form, using a′ = aR mod N , then all computations
are performed in Montgomery’s form, and finally all outputs are converted
back — if needed — to the classical form, using a = a′/R mod N . We need
to assume that (R,N) = 1, or equivalently that (β,N) = 1, to ensure the
existence of 1/R mod N . This is not usually a problem because β is a power
of two and N can be assumed to be odd.

Modern Computer Arithmetic, §2.1 53

classical (MSB) p-adic (LSB)

Euclidean division Hensel division, Montgomery reduction
Svoboda’s algorithm Montgomery-Svoboda

Euclidean gcd binary gcd
Newton’s method Hensel lifting

Figure 2.1: Equivalence between LSB and MSB algorithms.

2.1.3 Residue Number Systems

In a Residue Number System, a residue a is represented by a list of residues
ai modulo Ni, where the moduli Ni are coprime and their product is N . The
integers ai can be efficiently computed from a using a remainder tree, and
the unique integer 0 ≤ a < N = N1N2 · · · is computed from the ai by an
Explicit Chinese Remainder Theorem (§2.7). The residue number system
is interesting since addition and multiplication can be performed in parallel
on each small residue ai. This representation requires that N factors into
convenient moduliN1, N2, . . ., which is not always the case (see however §2.9).
Conversion to/from the RNS representation costs O(M(n) log n), see §2.7.

2.1.4 MSB vs LSB Algorithms

Many classical (most significant bits first or MSB) algorithms have a p-adic
(least significant bits first or LSB) equivalent form. Thus several algorithms
in this chapter are just LSB-variants of algorithms discussed in Chapter 1
(see Figure 2.1).

2.1.5 Link with Polynomials

As in Chapter 1, a strong link exists between modular arithmetic and arith-
metic on polynomials. One way of implementing finite fields Fq with q = pn

elements is to work with polynomials in Fp[x], which are reduced modulo a
monic irreducible polynomial f(x) ∈ Fp[x] of degree n. In this case modular
reduction happens both at the coefficient level (in Fp) and at the polynomial
level (modulo f(x)).

54 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Some algorithms work in the ring (Z/NZ)[x], where N is a composite in-
teger. An important case is the Schönhage-Strassen multiplication algorithm,
where N has the form 2ℓ + 1.

In both domains Fp[x] and (Z/NZ)[x], the Kronecker-Schönhage trick
(§1.3) can be applied efficiently. Since the coefficients are known to be
bounded, by p and N respectively, and thus have a fixed size, the segmen-
tation is quite efficient. If polynomials have degree d and coefficients are
bounded by N , the product coefficients are bounded by dN2, and one obtains
O(M(d log(Nd))) operations, instead of O(M(d)M(logN)) with the classi-
cal approach. Also, the implementation is simpler, because we only have to
implement fast arithmetic for large integers instead of fast arithmetic at both
the polynomial level and the coefficient level (see also Exercises 1.2 and 2.4).

2.2 Modular Addition and Subtraction

The addition of two residues in classical representation can be done as in
Algorithm ModularAdd.

Algorithm 2.1 ModularAdd

Input: residues a, b with 0 ≤ a, b < N
Output: c = a+ b mod N
c← a + b
if c ≥ N then

c← c−N .

Assuming that a and b are uniformly distributed in Z ∩ [0, N − 1], the
subtraction c ← c − N is performed with probability (1 − 1/N)/2. If we
use instead a symmetric representation in [−N/2, N/2), the probability that
we need to add or subtract N drops to 1/4 + O(1/N2) at the cost of an
additional test. This extra test might be expensive for small N — say one
or two words — but should be relatively cheap if N is large enough, say at
least ten words.

2.3 The Fourier Transform

In this section we introduce the discrete Fourier transform (DFT). An im-
portant application of the DFT is in computing convolutions via the Convo-

Modern Computer Arithmetic, §2.3 55

lution Theorem. In general, the convolution of two vectors can be computed
using three DFTs (for details see §2.9). Here we show how to compute the
DFT efficiently (via the Fast Fourier Transform or FFT), and show how it
can be used to multiply two n-bit integers in time O(n logn log log n) (the
Schönhage-Strassen algorithm, see §2.3.3).

2.3.1 Theoretical Setting

Let R be a ring, K ≥ 2 an integer, and ω a K-th principal root of unity in
R, i.e., such that ωK = 1 and

∑K−1
j=0 ωij = 0 for 1 ≤ i < K. The Fourier

transform (or forward (Fourier) transform) of a vector a = [a0, a1, . . . , aK−1]
of K elements from R is the vector â = [â0, â1, . . . , âK−1] such that

âi =

K−1∑

j=0

ωijaj . (2.1)

If we transform the vector a twice, we get back to the initial vector,
apart from a multiplicative factor K and a permutation of the elements of
the vector. Indeed, for 0 ≤ i < K,

̂̂ai =
K−1∑

j=0

ωijâj =
K−1∑

j=0

ωij
K−1∑

ℓ=0

ωjℓaℓ =
K−1∑

ℓ=0

aℓ

(
K−1∑

j=0

ω(i+ℓ)j

)
.

Let τ = ωi+ℓ. If i+ℓ 6= 0 mod K, i.e., if i+ℓ is not 0 or K, the sum
∑K−1

j=0 τ j

vanishes since ω is principal. For i+ ℓ ∈ {0, K} we have τ = 1 and the sum
equals K. It follows that

̂̂ai = K
K−1∑

ℓ=0

i+ℓ∈{0,K}

aℓ = Ka(−i) mod K .

Thus we have ̂̂a = K[a0, aK−1, aK−2, . . . , a2, a1].
If we transform the vector a twice, but use ω−1 instead of ω for the second

transform (which is then called a backward transform), we get:

˜̂ai =
K−1∑

j=0

ω−ijâj =
K−1∑

j=0

ω−ij
K−1∑

ℓ=0

ωjℓaℓ =
K−1∑

ℓ=0

aℓ

(
K−1∑

j=0

ω(ℓ−i)j

)
.

56 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

The sum
∑K−1

j=0 ω(ℓ−i)j vanishes unless ℓ = i, in which case it equals K. Thus

we have ˜̂ai = Kai. Apart from the multiplicative factor K, the backward
transform is the inverse of the forward transform, as might be expected from
the names.

2.3.2 The Fast Fourier Transform

If evaluated naively, Eqn. (2.1) requires Ω(K2) operations to compute the
Fourier transform of a vector of K elements. The Fast Fourier Transform
or FFT is an efficient way to evaluate Eqn. (2.1), using only O(K logK)
operations. From now on we assume that K is a power of two, since this is
the most common case and simplifies the description of the FFT (see §2.9
for the general case).

Let us illustrate the FFT for K = 8. Since ω8 = 1, we have reduced the
exponents modulo 8 in the following. We want to compute:

â0 = a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7,

â1 = a0 + ωa1 + ω2a2 + ω3a3 + ω4a4 + ω5a5 + ω6a6 + ω7a7,

â2 = a0 + ω2a1 + ω4a2 + ω6a3 + a4 + ω2a5 + ω4a6 + ω6a7,

â3 = a0 + ω3a1 + ω6a2 + ωa3 + ω4a4 + ω7a5 + ω2a6 + ω5a7,

â4 = a0 + ω4a1 + a2 + ω4a3 + a4 + ω4a5 + a6 + ω4a7,

â5 = a0 + ω5a1 + ω2a2 + ω7a3 + ω4a4 + ωa5 + ω6a6 + ω3a7,

â6 = a0 + ω6a1 + ω4a2 + ω2a3 + a4 + ω6a5 + ω4a6 + ω2a7,

â7 = a0 + ω7a1 + ω6a2 + ω5a3 + ω4a4 + ω3a5 + ω2a6 + ωa7.

We see that we can share some computations. For example, the sum a0 + a4
appears in four places: in â0, â2, â4 and â6. Let us define a0,4 = a0 + a4,
a1,5 = a1+a5, a2,6 = a2+a6, a3,7 = a3+a7, a4,0 = a0+ω4a4, a5,1 = a1+ω4a5,
a6,2 = a2+ω4a6, a7,3 = a3+ω4a7. Then we have, using the fact that ω8 = 1:

â0 = a0,4 + a1,5 + a2,6 + a3,7, â1 = a4,0 + ωa5,1 + ω2a6,2 + ω3a7,3,
â2 = a0,4 + ω2a1,5 + ω4a2,6 + ω6a3,7, â3 = a4,0 + ω3a5,1 + ω6a6,2 + ωa7,3,
â4 = a0,4 + ω4a1,5 + a2,6 + ω4a3,7, â5 = a4,0 + ω5a5,1 + ω2a6,2 + ω7a7,3,
â6 = a0,4 + ω6a1,5 + ω4a2,6 + ω2a3,7, â7 = a4,0 + ω7a5,1 + ω6a6,2 + ω5a7,3.

Now the sum a0,4+a2,6 appears at two different places. Let a0,4,2,6 = a0,4+a2,6,
a1,5,3,7 = a1,5 + a3,7, a2,6,0,4 = a0,4 + ω4a2,6, a3,7,1,5 = a1,5 + ω4a3,7, a4,0,6,2 =

Modern Computer Arithmetic, §2.3 57

a4,0+ω2a6,2, a5,1,7,3 = a5,1+ω2a7,3, a6,2,4,0 = a4,0+ω6a6,2, a7,3,5,1 = a5,1+ω6a7,3.
Then we have

â0 = a0,4,2,6 + a1,5,3,7, â1 = a4,0,6,2 + ωa5,1,7,3,
â2 = a2,6,0,4 + ω2a3,7,1,5, â3 = a6,2,4,0 + ω3a7,3,5,1,
â4 = a0,4,2,6 + ω4a1,5,3,7, â5 = a4,0,6,2 + ω5a5,1,7,3,
â6 = a2,6,0,4 + ω6a3,7,1,5, â7 = a6,2,4,0 + ω7a7,3,5,1.

In summary, after a first stage where we have computed 8 intermediary vari-
ables a0,4 to a7,3, and a second stage with 8 extra intermediary variables
a0,4,2,6 to a7,3,5,1, we are able to compute the transformed vector in 8 extra
steps. The total number of steps is thus 24 = 8 lg 8, where each step has the
form a← b+ ωjc.

If we take a closer look, we can group operations in pairs (a, a′) which
have the form a = b+ωjc and a′ = b+ωj+4c. For example, in the first stage
we have a1,5 = a1 + a5 and a5,1 = a1 + ω4a5; in the second stage we have
a4,0,6,2 = a4,0 + ω2a6,2 and a6,2,4,0 = a4,0 + ω6a6,2. Since ω4 = −1, this can
also be written (a, a′) = (b+ ωjc, b− ωjc), where ωjc needs to be computed
only once. A pair of two such operations is called a butterfly operation.

The FFT can be performed in place. Indeed, the result of the butterfly
between a0 and a4, that is (a0,4, a4,0) = (a0 + a4, a0 − a4), can overwrite
(a0, a4), since the values of a0 and a4 are no longer needed.

Algorithm ForwardFFT is a recursive and in-place implementation of
the forward FFT. It uses an auxiliary function bitrev(j,K) which returns
the bit-reversal of the integer j, considered as an integer of lgK bits. For
example, bitrev(j, 8) gives 0, 4, 2, 6, 1, 5, 3, 7 for j = 0, . . . , 7.

Algorithm 2.2 ForwardFFT

Input: vector a = [a0, a1, . . . , aK−1], ω principal K-th root of unity, K = 2k

Output: in-place transformed vector â, bit-reversed
1: if K = 2 then
2: [a0, a1]← [a0 + a1, a0 − a1]
3: else
4: [a0, a2, ..., aK−2]← ForwardFFT([a0, a2, ..., aK−2], ω

2, K/2)
5: [a1, a3, ..., aK−1]← ForwardFFT([a1, a3, ..., aK−1], ω

2, K/2)
6: for j from 0 to K/2− 1 do
7: [a2j , a2j+1]← [a2j + ωbitrev(j,K/2)a2j+1, a2j − ωbitrev(j,K/2)a2j+1].

58 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Theorem 2.3.1 Given an input vector a = [a0, a1, . . . , aK−1], Algorithm
ForwardFFT replaces it by its Fourier transform, in bit-reverse order, in
O(K logK) operations in the ring R.

Proof. We prove the statement by induction on K = 2k. For K = 2,
the Fourier transform of [a0, a1] is [a0 + a1, a0 + ωa1], and the bit-reverse
order coincides with the normal order; since ω = −1, the statement follows.
Now assume the statement is true for K/2. Let 0 ≤ j < K/2, and write
j′ := bitrev(j,K/2). Let b = [b0, ..., bK/2−1] be the vector obtained at step 4,
and c = [c0, ..., cK/2−1] be the vector obtained at step 5. By induction:

bj =

K/2−1∑

ℓ=0

ω2j′ℓa2ℓ, cj =

K/2−1∑

ℓ=0

ω2j′ℓa2ℓ+1.

Since bj is stored at a2j and cj at a2j+1, we compute at step 7:

a2j = bj + ωj′cj =

K/2−1∑

ℓ=0

ω2j′ℓa2ℓ + ωj′
K/2−1∑

ℓ=0

ω2j′ℓa2ℓ+1 =
K−1∑

ℓ=0

ωj′ℓaℓ = âj′.

Similarly, since −ωj′ = ωK/2+j′:

a2j+1 =

K/2−1∑

ℓ=0

ω2j′ℓa2ℓ + ωK/2+j′
K/2−1∑

ℓ=0

ω2j′ℓa2ℓ+1

=
K−1∑

ℓ=0

ω(K/2+j′)ℓaℓ = âK/2+j′ ,

where we used the fact that ω2j′ = ω2(j′+K/2). Since bitrev(2j,K) =
bitrev(j,K/2) and bitrev(2j + 1, K) = K/2 + bitrev(j,K/2), the first part
of the theorem follows. The complexity bound follows from the fact that the
cost T (K) satisfies the recurrence T (K) ≤ 2T (K/2) +O(K).

Theorem 2.3.2 Given an input vector a = [a0, aK/2, . . . , aK−1] in bit-reverse
order, Algorithm BackwardFFT replaces it by its backward Fourier trans-
form, in normal order, in O(K logK) operations in R.

Modern Computer Arithmetic, §2.3 59

Algorithm 2.3 BackwardFFT

Input: vector a bit-reversed, ω principal K-th root of unity, K = 2k

Output: in-place transformed vector ã, normal order
1: if K = 2 then
2: [a0, a1]← [a0 + a1, a0 − a1]
3: else
4: [a0, ..., aK/2−1]← BackwardFFT([a0, ..., aK/2−1], ω

2, K/2)
5: [aK/2, ..., aK−1]← BackwardFFT([aK/2, ..., aK−1], ω

2, K/2)
6: for j from 0 to K/2− 1 do ⊲ ω−j = ωK−j

7: [aj, aK/2+j]← [aj + ω−jaK/2+j , aj − ω−jaK/2+j].

Proof. The complexity bound follows as in the proof of Theorem 2.3.1. For
the correctness result, we again use induction on K = 2k. For K = 2 the
backward Fourier transform ã = [a0 + a1, a0 + ω−1a1] is exactly what the
algorithm returns, since ω = ω−1 = −1 in that case. Assume now K ≥ 4,
a power of two. The first half, say b, of the vector a corresponds to the
bit-reversed vector of the even indices, since bitrev(2j,K) = bitrev(j,K/2).
Similarly, the second half, say c, corresponds to the bit-reversed vector of
the odd indices, since bitrev(2j+1, K) = K/2+bitrev(j,K/2). Thus we can
apply the theorem by induction to b and c. It follows that b is the backward
transform of length K/2 with ω2 for the even indices (in normal order), and
similarly c is the backward transform of length K/2 for the odd indices:

bj =

K/2−1∑

ℓ=0

ω−2jℓa2ℓ, cj =

K/2−1∑

ℓ=0

ω−2jℓa2ℓ+1.

Since bj is stored in aj and cj in aK/2+j , we have:

aj = bj + ω−jcj =

K/2−1∑

ℓ=0

ω−2jℓa2ℓ + ω−j

K/2−1∑

ℓ=0

ω−2jℓa2ℓ+1

=

K−1∑

ℓ=0

ω−jℓaℓ = ãj ,

60 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

and similarly, using −ω−j = ω−K/2−j and ω−2j = ω−2(K/2+j):

aK/2+j =

K/2−1∑

ℓ=0

ω−2jℓa2ℓ + ω−K/2−j

K/2−1∑

ℓ=0

ω−2jℓa2ℓ+1

=
K−1∑

ℓ=0

ω−(K/2+j)ℓaℓ = ãK/2+j.

2.3.3 The Schönhage-Strassen Algorithm

We now describe the Schönhage-Strassen O(n logn log logn) algorithm to
multiply two integers of n bits. The heart of the algorithm is a routine to
multiply two integers modulo 2n + 1.

Algorithm 2.4 FFTMulMod

Input: 0 ≤ A,B < 2n + 1, an integer K = 2k such that n = MK
Output: C = A · B mod (2n + 1)
1: decompose A =

∑K−1
j=0 aj2

jM with 0 ≤ aj < 2M , except 0 ≤ aK−1 ≤ 2M

2: decompose B similarly
3: choose n′ ≥ 2n/K + k, n′ multiple of K; let θ = 2n

′/K , ω = θ2

4: for j from 0 to K − 1 do
5: (aj , bj)← (θjaj , θ

jbj) mod (2n
′
+ 1)

6: a← ForwardFFT(a, ω,K), b← ForwardFFT(b, ω,K)
7: for j from 0 to K − 1 do ⊲ call FFTMulMod
8: cj ← ajbj mod (2n

′
+ 1) ⊲ recursively if n′ is large

9: c← BackwardFFT(c, ω,K)
10: for j from 0 to K − 1 do
11: cj ← cj/(Kθj) mod (2n

′
+ 1)

12: if cj ≥ (j + 1)22M then
13: cj ← cj − (2n

′
+ 1)

14: C =
∑K−1

j=0 cj2
jM .

Theorem 2.3.3 Given 0 ≤ A,B < 2n + 1, Algorithm FFTMulMod cor-
rectly returns A·B mod (2n+1), and it costs O(n logn log log n) bit-operations
if K = Θ(

√
n).

Modern Computer Arithmetic, §2.3 61

Proof. The proof is by induction on n, because at step 8 we call FFT-
MulMod recursively unless n′ is sufficiently small that a simpler algorithm
(classical, Karatsuba or Toom-Cook) can be used. There is no difficulty in
starting the induction.

With aj , bj the values at steps 1 and 2, we have A =
∑K−1

j=0 aj2
jM and

B =
∑K−1

j=0 bj2
jM , thus A · B =

∑K−1
j=0 cj2

jM mod (2n + 1) with

cj =

K−1∑

ℓ,m=0

ℓ+m=j

aℓbm −
K−1∑

ℓ,m=0

ℓ+m=K+j

aℓbm. (2.2)

We have (j+1−K)22M ≤ cj < (j+1)22M , since the first sum contains j+1
terms, the second sum K − (j + 1) terms, and at least one of aℓ and bm is
less than 2M in the first sum.

Let a′j be the value of aj after step 5: a′j = θjaj mod (2n
′
+ 1), and

similarly for b′j . Using Theorem 2.3.1, after step 6 we have abitrev(j,K) =∑K−1
ℓ=0 ωℓja′ℓ mod (2n

′
+ 1), and similarly for b. Thus at step 8:

cbitrev(j,K) =

(
K−1∑

ℓ=0

ωℓja′ℓ

)(
K−1∑

m=0

ωmjb′m

)
.

After step 9, using Theorem 2.3.2:

c′i =
K−1∑

j=0

ω−ij

(
K−1∑

ℓ=0

ωℓja′ℓ

)(
K−1∑

m=0

ωmjb′m

)

= K
K−1∑

ℓ,m=0

ℓ+m=i

a′ℓb
′
m +K

K−1∑

ℓ,m=0

ℓ+m=K+i

a′ℓb
′
m.

The first sum equals θi
∑

ℓ+m=i aℓbm; the second is θK+i
∑

ℓ+m=K+i aℓbm.

Since θK = −1 mod (2n
′
+ 1), after step 11 we have:

ci =

K−1∑

ℓ,m=0

ℓ+m=i

aℓbm −
K−1∑

ℓ,m=0

ℓ+m=K+i

aℓbm mod (2n
′

+ 1).

The correction at step 13 ensures that ci lies in the correct interval, as given
by Eqn. (2.2).

62 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

For the complexity analysis, assume that K = Θ(
√
n). Thus we have

n′ = Θ(
√
n). Steps 1 and 2 cost O(n); step 5 also costs O(n) (counting

the cumulated cost for all values of j). Step 6 costs O(K logK) times the
cost of one butterfly operation mod (2n

′
+ 1), which is O(n′), thus a total

of O(Kn′ logK) = O(n logn). Step 8, using the same algorithm recursively,
costs O(n′ log n′ log logn′) per value of j by the induction hypothesis, giving a
total of O(n logn log logn). The backward FFT costs O(n logn) too, and the
final steps cost O(n), giving a total cost of O(n logn log log n). The log logn
term is the depth of the recursion, each level reducing n to n′ = O(

√
n).

Example: to multiply two integers modulo (21 048 576 + 1), we can take
K = 210 = 1024, and n′ = 3072. We recursively compute 1024 products
modulo (23072 + 1). Alternatively, we can take the smaller value K = 512,
with 512 recursive products modulo (24608 + 1).
Remark 1: the “small” products at step 8 (mod (23072+1) or mod (24608+1)
in our example) can be performed by the same algorithm applied recursively,
but at some point (determined by details of the implementation) it will be
more efficient to use a simpler algorithm, such as the classical or Karatsuba
algorithm (see §1.3). In practice the depth of recursion is a small constant,
typically 1 or 2. Thus, for practical purposes, the log log n term can be
regarded as a constant. For a theoretical way of avoiding the log logn term,
see the comments on Fürer’s algorithm in §2.9.
Remark 2: if we replace θ by 1 in Algorithm FFTMulMod, i.e., remove
step 5, replace step 11 by cj ← cj/K mod (2n

′
+1), and replace the condition

at step 12 by cj ≥ K ·22M , then we compute C = A·B mod (2n−1) instead of
mod (2n+1). This is useful, for example, in McLaughlin’s algorithm (§2.4.3).

Algorithm FFTMulMod enables us to multiply two integers modulo
(2n+1) in O(n logn log log n) operations, for a suitable n and a corresponding
FFT length K = 2k. Since we should have K ≈ √n and K must divide n,
suitable values of n are the integers with the low-order half of their bits zero;
there is no shortage of such integers. To multiply two integers of at most n
bits, we first choose a suitable bit size m ≥ 2n. We consider the integers as
residues modulo (2m+1), then Algorithm FFTMulMod gives their integer
product. The resulting complexity is O(n logn log logn), since m = O(n). In
practice the log logn term can be regarded as a constant; theoretically it can
be replaced by an extremely slowly-growing function (see Remark 1 above).

In this book, we sometimes implicitly assume that n-bit integer multi-
plication costs the same as three FFTs of length 2n, since this is true if an

Modern Computer Arithmetic, §2.4 63

FFT-based algorithm is used for multiplication. The constant “three” can
be reduced if some of the FFTs can be precomputed and reused many times,
for example if some of the operands in the multiplications are fixed.

2.4 Modular Multiplication

Modular multiplication means computing A · B mod N , where A and B are
residues modulo N . Of course, once the product C = A · B has been com-
puted, it suffices to perform a modular reduction C mod N , which itself re-
duces to an integer division. The reader may ask why we did not cover this
topic in §1.4. There are two reasons. First, the algorithms presented below
benefit from some precomputations involving N , and are thus specific to the
case where several reductions are performed with the same modulus. Sec-
ond, some algorithms avoid performing the full product C = A ·B; one such
example is McLaughlin’s algorithm (§2.4.3).

Algorithms with precomputations include Barrett’s algorithm (§2.4.1),
which computes an approximation to the inverse of the modulus, thus trading
division for multiplication; Montgomery’s algorithm, which corresponds to
Hensel’s division with remainder only (§1.4.8), and its subquadratic variant,
which is the LSB-variant of Barrett’s algorithm; and finally McLaughlin’s
algorithm (§2.4.3). The cost of the precomputations is not taken into account:
it is assumed to be negligible if many modular reductions are performed.
However, we assume that the amount of precomputed data uses only linear,
that is O(logN), space.

As usual, we assume that the modulus N has n words in base β, that A
and B have at most n words, and in some cases that they are fully reduced,
i.e., 0 ≤ A,B < N .

2.4.1 Barrett’s Algorithm

Barrett’s algorithm is attractive when many divisions have to be made with
the same divisor; this is the case when one performs computations modulo
a fixed integer. The idea is to precompute an approximation to the inverse
of the divisor. Thus, an approximation to the quotient is obtained with just
one multiplication, and the corresponding remainder after a second multipli-
cation. A small number of corrections suffice to convert the approximations

64 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

into exact values. For the sake of simplicity, we describe Barrett’s algorithm
in base β, where β might be replaced by any integer, in particular 2n or βn.

Algorithm 2.5 BarrettDivRem

Input: integers A, B with 0 ≤ A < β2, β/2 < B < β
Output: quotient Q and remainder R of A divided by B
1: I ← ⌊β2/B⌋ ⊲ precomputation
2: Q← ⌊A1I/β⌋ where A = A1β + A0 with 0 ≤ A0 < β
3: R← A−QB
4: while R ≥ B do
5: (Q,R)← (Q+ 1, R−B)

6: return (Q,R).

Theorem 2.4.1 Algorithm BarrettDivRem is correct and step 5 is per-
formed at most 3 times.

Proof. Since A = QB+R is invariant in the algorithm, we just need to prove
that 0 ≤ R < B at the end. We first consider the value of Q,R before the
while-loop. Since β/2 < B < β, we have β < β2/B < 2β, thus β ≤ I < 2β.
We have Q ≤ A1I/β ≤ A1β/B ≤ A/B. This ensures that R is nonnegative.
Now I > β2/B − 1, which gives

IB > β2 − B.

Similarly, Q > A1I/β − 1 gives

βQ > A1I − β.

This yields βQB > A1IB−βB > A1(β
2−B)−βB = β(A−A0)−B(β+A1) >

βA−4βB since A0 < β < 2B and A1 < β. We conclude that A < B(Q+4),
thus at most 3 corrections are needed.

The bound of 3 corrections is tight: it is attained for A = 1980, B = 36,
β = 64. In this example I = 113, A1 = 30, Q = 52, R = 108 = 3B.

The multiplications at steps 2 and 3 may be replaced by short products,
more precisely the multiplication at step 2 by a high short product, and that
at step 3 by a low short product (see §3.3).

Barrett’s algorithm can also be used for an unbalanced division, when
dividing (k + 1)n words by n words for k ≥ 2, which amounts to k divisions
of 2n words by the same n-word divisor. In this case, we say that the divisor
is implicitly invariant.

Modern Computer Arithmetic, §2.4 65

Complexity of Barrett’s Algorithm

If the multiplications at steps 2 and 3 are performed using full products,
Barrett’s algorithm costs 2M(n) for a divisor of size n. In the FFT range,
this cost might be lowered to 1.5M(n) using the “wrap-around trick” (§3.4.1);
moreover, if the forward transforms of I and B are stored, the cost decreases
to M(n), assuming M(n) is the cost of three FFTs.

2.4.2 Montgomery’s Multiplication

Montgomery’s algorithm is very efficient for modular arithmetic modulo
a fixed modulus N . The main idea is to replace a residue A mod N by
A′ = λA mod N , where A′ is the “Montgomery form” corresponding to the
residue A, with λ an integer constant such that gcd(N, λ) = 1. Addition and
subtraction are unchanged, since λA + λB = λ(A + B) mod N . The mul-
tiplication of two residues in Montgomery form does not give exactly what
we want: (λA)(λB) 6= λ(AB) mod N . The trick is to replace the classical
modular multiplication by “Montgomery’s multiplication”:

MontgomeryMul(A′, B′) =
A′B′

λ
mod N.

For some values of λ, MontgomeryMul(A′, B′) can easily be computed, in
particular for λ = βn, where N uses n words in base β. Algorithm 2.6 is a
quadratic algorithm (REDC) to compute MontgomeryMul(A’, B’) in this
case, and a subquadratic reduction (FastREDC) is given in Algorithm 2.7.

Another view of Montgomery’s algorithm for λ = βn is to consider that
it computes the remainder of Hensel’s division (§1.4.8).

Algorithm 2.6 REDC (quadratic non-interleaved version). The ci form the
current base-β decomposition of C, i.e., they are defined by C =

∑2n−1
0 ciβ

i .

Input: 0 ≤ C < β2n, N < βn, µ← −N−1 mod β, (β,N) = 1
Output: 0 ≤ R < βn such that R = Cβ−n mod N
1: for i from 0 to n− 1 do
2: qi ← µci mod β ⊲ quotient selection
3: C ← C + qiNβi

4: R← Cβ−n ⊲ trivial exact division
5: if R ≥ βn then return R−N else return R.

66 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Theorem 2.4.2 Algorithm REDC is correct.

Proof. We first prove that R = Cβ−n mod N : C is only modified in step 3,
which does not change C mod N , thus at step 4 we have R = Cβ−n mod N ,
and this remains true in the last step.

Assume that, for a given i, we have C = 0 mod βi when entering step 2.
Since qi = −ci/N mod β, we have C + qiNβi = 0 mod βi+1 at the next step,
so the next value of ci is 0. Thus, on exiting the for-loop, C is a multiple of
βn, and R is an integer at step 4.

Still at step 4, we have C < β2n + (β − 1)N(1 + β + · · · + βn−1) =
β2n +N(βn − 1), thus R < βn +N and R−N < βn.

Compared to classical division (Algorithm BasecaseDivRem, §1.4.1),
Montgomery’s algorithm has two significant advantages: the quotient selec-
tion is performed by a multiplication modulo the word base β, which is more
efficient than a division by the most significant word bn−1 of the divisor as
in BasecaseDivRem; and there is no repair step inside the for-loop — the
repair step is at the very end.

For example, with inputs C = 766 970 544 842 443 844, N = 862 664 913,
and β = 1000, Algorithm REDC precomputes µ = 23; then we have
q0 = 412, which yields C ← C + 412N = 766 970 900 260 388 000; then
q1 = 924, which yields C ← C + 924Nβ = 767 768 002 640 000 000; then
q2 = 720, which yields C ← C + 720Nβ2 = 1 388 886 740 000 000 000. At
step 4, R = 1 388 886 740, and since R ≥ β3, REDC returns R − N =
526 221 827.

Since Montgomery’s algorithm — i.e., Hensel’s division with remainder
only — can be viewed as an LSB variant of classical division, Svoboda’s
divisor preconditioning (§1.4.2) also translates to the LSB context. More
precisely, in AlgorithmREDC, one wants to modify the divisor N so that the
quotient selection q ← µci mod β at step 2 becomes trivial. The multiplier
k used in Svoboda division is simply the parameter µ in REDC. A natural
choice is µ = 1, which corresponds to N = −1 mod β. This motivates the
Montgomery-Svoboda algorithm, which is as follows:

1. first compute N ′ = µN , with N ′ < βn+1, where µ = −1/N mod β;

2. perform the n − 1 first loops of REDC, replacing µ by 1, and N by
N ′;

Modern Computer Arithmetic, §2.4 67

3. perform a final classical loop with µ and N , and the last steps (4–5)
from REDC.

Quotient selection in the Montgomery-Svoboda algorithm simply involves
“reading” the word of weight βi in the divisor C.

For the example above, we get N ′ = 19 841 292 999; q0 is the least signifi-
cant word of C, i.e., q0 = 844, so C ← C + 844N ′ = 766 987 290 893 735 000;
then q1 = 735 and C ← C+735N ′β = 781 570 641 248 000 000. The last step
gives q2 = 704 and C ← C + 704Nβ2 = 1 388 886 740 000 000 000, which is
what we found previously.

Subquadratic Montgomery Reduction

A subquadratic version FastREDC of Algorithm REDC is obtained by
taking n = 1, and considering β as a “giant base” (alternatively, replace β
by βn below):

Algorithm 2.7 FastREDC (subquadratic Montgomery reduction)

Input: 0 ≤ C < β2, N < β, µ← −1/N mod β
Output: 0 ≤ R < β such that R = C/β mod N
1: Q← µC mod β
2: R← (C +QN)/β
3: if R ≥ β then return R−N else return R.

This is exactly the 2-adic counterpart of Barrett’s subquadratic algorithm;
steps 1–2 might be performed by a low short product and a high short product
respectively.

When combined with Karatsuba’s multiplication, assuming the products
of steps 1–2 are full products, the reduction requires 2 multiplications of
size n, i.e., 6 multiplications of size n/2 (n denotes the size of N , β being
a giant base). With some additional precomputation, the reduction might
be performed with 5 multiplications of size n/2, assuming n is even. This
is simply the Montgomery-Svoboda algorithm with N having two big words
in base βn/2: The cost of the algorithm is M(n, n/2) to compute q0N

′ (even
if N ′ has in principle 3n/2 words, we know N ′ = Hβn/2 − 1 with H < βn,
thus it suffices to multiply q0 by H), M(n/2) to compute µC mod βn/2, and
again M(n, n/2) to compute q1N , thus a total of 5M(n/2) if each n× (n/2)
product is realized by two (n/2)× (n/2) products.

68 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm 2.8 MontgomerySvoboda2

Input: 0 ≤ C < β2n, N < βn, µ← −1/N mod βn/2, N ′ = µN
Output: 0 ≤ R < βn such that R = C/βn mod N
1: q0 ← C mod βn/2

2: C ← (C + q0N
′)/βn/2

3: q1 ← µC mod βn/2

4: R← (C + q1N)/βn/2

5: if R ≥ βn then return R−N else return R.

The algorithm is quite similar to the one described at the end of §1.4.6,
where the cost was 3M(n/2) + D(n/2) for a division of 2n by n with re-
mainder only. The main difference here is that, thanks to Montgomery’s
form, the last classical division D(n/2) in Svoboda’s algorithm is replaced
by multiplications of total cost 2M(n/2), which is usually faster.

Algorithm MontgomerySvoboda2 can be extended as follows. The
value C obtained after step 2 has 3n/2 words, i.e., an excess of n/2 words.
Instead of reducing that excess with REDC, one could reduce it using
Svoboda’s technique with µ′ = −1/N mod βn/4, and N ′′ = µ′N . This
would reduce the low n/4 words from C at the cost of M(n, n/4), and a
last REDC step would reduce the final excess of n/4, which would give
D(2n, n) = M(n, n/2) + M(n, n/4) + M(n/4) + M(n, n/4). This “folding”
process can be generalized to D(2n, n) = M(n, n/2) + · · · + M(n, n/2k) +
M(n/2k) +M(n, n/2k). If M(n, n/2k) reduces to 2kM(n/2k), this gives:

D(n) = 2M(n/2) + 4M(n/4) + · · ·+ 2k−1M(n/2k−1) + (2k+1 + 1)M(n/2k).

Unfortunately, the resulting multiplications become more and more unbal-
anced, and we need to store k precomputed multiples N ′, N ′′, . . . of N , each
requiring at least n words. Figure 2.2 shows that the single-folding algorithm
is the best one.

Exercise 2.6 discusses further possible improvements in the Montgomery-
Svoboda algorithm, achieving D(n) ≈ 1.58M(n) in the case of Karatsuba
multiplication.

2.4.3 McLaughlin’s Algorithm

McLaughlin’s algorithm assumes one can perform fast multiplication modulo
both 2n− 1 and 2n +1, for sufficiently many values of n. This assumption is

Modern Computer Arithmetic, §2.4 69

Algorithm Karatsuba Toom-Cook 3-way Toom-Cook 4-way

D(n) 2.00M(n) 2.63M(n) 3.10M(n)
1-folding 1.67M(n) 1.81M(n) 1.89M(n)
2-folding 1.67M(n) 1.91M(n) 2.04M(n)
3-folding 1.74M(n) 2.06M(n) 2.25M(n)

Figure 2.2: Theoretical complexity of subquadratic REDC with 1-, 2- and
3-folding, for different multiplication algorithms.

true for example with the Schönhage-Strassen algorithm: the original version
multiplies two numbers modulo 2n+1, but discarding the “twist” operations
before and after the Fourier transforms computes their product modulo 2n−1.
(This has to be done at the top level only: the recursive operations compute
modulo 2n

′
+ 1 in both cases. See Remark 2 on page 62.)

The key idea in McLaughlin’s algorithm is to avoid the classical “multiply
and divide” method for modular multiplication. Instead, assuming that N is
relatively prime to 2n−1, it determines AB/(2n−1) mod N with convolutions
modulo 2n ± 1, which can be performed in an efficient way using the FFT.

Algorithm 2.9 MultMcLaughlin

Input: A,B with 0 ≤ A,B < N < 2n, µ = −N−1 mod (2n − 1)
Output: AB/(2n − 1) mod N
1: m← ABµ mod (2n − 1)
2: S ← (AB +mN) mod (2n + 1)
3: w ← −S mod (2n + 1)
4: if 2|w then s← w/2 else s← (w + 2n + 1)/2
5: if AB +mN = s mod 2 then t← s else t← s+ 2n + 1
6: if t < N then return t else return t−N .

Theorem 2.4.3 Algorithm MultMcLaughlin computes AB/(2n− 1) mod
N correctly, in ∼1.5M(n) operations, assuming multiplication modulo 2n±1
costs ∼M(n/2), or the same as 3 Fourier transforms of size n.

Proof. Step 1 is similar to step 1 of Algorithm FastREDC, with β replaced
by 2n−1. It follows that AB+mN = 0 mod (2n−1), therefore we have AB+
mN = k(2n − 1) with 0 ≤ k < 2N . Step 2 computes S = −2k mod (2n + 1),

70 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

then step 3 gives w = 2k mod (2n+1), and s = k mod (2n+1) in step 4. Now,
since 0 ≤ k < 2n+1, the value s does not uniquely determine k, whose missing
bit is determined from the least significant bit from AB + mN (step 5).
Finally, the last step reduces t = k modulo N .

The cost of the algorithm is mainly that of the four multiplications
AB mod (2n ± 1), (AB)µ mod (2n − 1) and mN mod (2n + 1), which cost
4M(n/2) altogether. However, in (AB)µ mod (2n−1) and mN mod (2n+1),
the operands µ and N are invariant, therefore their Fourier transforms can
be precomputed, which saves 2M(n/2)/3 altogether. A further saving of
M(n/2)/3 is obtained since we perform only one backward Fourier trans-
form in step 2. Accounting for the savings gives (4 − 2/3 − 1/3)M(n/2) =
3M(n/2) ∼ 1.5M(n).

The ∼1.5M(n) cost of McLaughlin’s algorithm is quite surprising, since
it means that a modular multiplication can be performed faster than two
multiplications. In other words, since a modular multiplication is basically a
multiplication followed by a division, this means that (at least in this case)
the “division” can be performed for half the cost of a multiplication!

2.4.4 Special Moduli

For special moduli N faster algorithms may exist. The ideal case is N =
βn±1. This is precisely the kind of modulus used in the Schönhage-Strassen
algorithm based on the Fast Fourier Transform (FFT). In the FFT range, a
multiplication modulo βn ± 1 is used to perform the product of two integers
of at most n/2 words, and a multiplication modulo βn±1 costs ∼M(n/2) ∼
M(n)/2.

For example, in elliptic curve cryptography (ECC), one almost always
uses a special modulus, for example a pseudo-Mersenne prime like 2192−264−1
or 2256 − 2224 + 2192 + 296 − 1. However, in most applications the modulus
can not be chosen, and there is no reason for it to have a special form.

We refer to §2.9 for further information about special moduli.

2.5 Modular Division and Inversion

We have seen above that modular multiplication reduces to integer division,
since to compute ab mod N , the classical method consists of dividing ab by
N to obtain ab = qN + r, then ab = r mod N . In the same vein, modular

Modern Computer Arithmetic, §2.5 71

division reduces to an (extended) integer gcd. More precisely, the division
a/b mod N is usually computed as a · (1/b) mod N , thus a modular inverse is
followed by a modular multiplication. We concentrate on modular inversion
in this section.

We have seen in Chapter 1 that computing an extended gcd is expensive,
both for small sizes, where it usually costs the same as several multiplica-
tions, and for large sizes, where it costs O(M(n) logn). Therefore modular
inversions should be avoided if possible; we explain at the end of this section
how this can be done.

Algorithm 2.10 (ModularInverse) is just Algorithm ExtendedGcd
(§1.6.2), with (a, b) → (b, N) and the lines computing the cofactors of N
omitted.

Algorithm 2.10 ModularInverse

Input: integers b and N , b prime to N
Output: integer u = 1/b mod N
(u, w)← (1, 0), c← N
while c 6= 0 do

(q, r)← DivRem(b, c)
(b, c)← (c, r)
(u, w)← (w, u− qw)

return u.

Algorithm ModularInverse is the naive version of modular inversion,
with complexity O(n2) if N takes n words in base β. The subquadratic
O(M(n) logn) algorithm is based on theHalfBinaryGcd algorithm (§1.6.3).

When the modulus N has a special form, faster algorithms may exist. In
particular for N = pk, O(M(n)) algorithms exist, based on Hensel lifting,
which can be seen as the p-adic variant of Newton’s method (§4.2). To
compute 1/b mod N , we use a p-adic version of the iteration (4.5):

xj+1 = xj + xj(1− bxj) mod pk. (2.3)

Assume xj approximates 1/b to “p-adic precision” ℓ, i.e., bxj = 1 + εpℓ, and
k = 2ℓ. Then, modulo pk: bxj+1 = bxj(2−bxj) = (1+εpℓ)(1−εpℓ) = 1−ε2p2ℓ.
Therefore xj+1 approximates 1/b to double precision (in the p-adic sense).

As an example, assume one wants to compute the inverse of an odd integer
bmodulo 232. The initial approximation x0 = 1 satisfies x0 = 1/b mod 2, thus

72 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

five iterations are enough. The first iteration is x1 ← x0+x0(1−bx0) mod 22,
which simplifies to x1 ← 2−b mod 4 since x0 = 1. Now whether b = 1 mod 4
or b = 3 mod 4, we have 2− b = b mod 4, thus one can immediately start the
second iteration with x1 = b implicit:

x2 ← b(2− b2) mod 24, x3 ← x2(2− bx2) mod 28,
x4 ← x3(2− bx3) mod 216, x5 ← x4(2− bx4) mod 232.

Consider for example b = 17. The above algorithm yields x2 = 1, x3 = 241,
x4 = 61 681 and x5 = 4 042 322 161. Of course, any computation mod pℓ

might be computed modulo pk for k ≥ ℓ. In particular, all the above compu-
tations might be performed modulo 232. On a 32-bit computer, arithmetic
on basic integer types is usually performed modulo 232, thus the reduction
comes for free, and one can write in the C language (using unsigned variables
and the same variable x for x2, . . . , x5):

x = b*(2 - b*b); x *= 2 - b*x; x *= 2 - b*x; x *= 2 - b*x;

Another way to perform modular division when the modulus has a special
form is Hensel’s division (§1.4.8). For a modulus N = βn, given two integers
A,B, we compute Q and R such that

A = QB +Rβn.

Therefore we have A/B = Q mod βn. While Montgomery’s modular multi-
plication only computes the remainder R of Hensel’s division, modular divi-
sion computes the quotient Q, thus Hensel’s division plays a central role in
modular arithmetic modulo βn.

2.5.1 Several Inversions at Once

A modular inversion, which reduces to an extended gcd (§1.6.2), is usually
much more expensive than a multiplication. This is true not only in the
FFT range, where a gcd takes time Θ(M(n) logn), but also for smaller num-
bers. When several inversions are to be performed modulo the same number,
Algorithm MultipleInversion is usually faster.

Theorem 2.5.1 Algorithm MultipleInversion is correct.

Proof. We have zi = x1x2 . . . xi mod N , thus at the beginning of step 6 for
a given i, q = (x1 . . . xi)

−1 mod N , which indeed gives yi = 1/xi mod N .

Modern Computer Arithmetic, §2.5 73

Algorithm 2.11 MultipleInversion
Input: 0 < x1, . . . , xk < N
Output: y1 = 1/x1 mod N, . . . , yk = 1/xk mod N
1: z1 ← x1

2: for i from 2 to k do
3: zi ← zi−1xi mod N

4: q ← 1/zk mod N
5: for i from k downto 2 do
6: yi ← qzi−1 mod N
7: q ← qxi mod N

8: y1 ← q.

This algorithm uses only one modular inversion (step 4), and 3(k − 1) mod-
ular multiplications. Thus it is faster than k inversions when a modular
inversion is more than three times as expensive as a product. Figure 2.3
shows a recursive variant of the algorithm, with the same number of modu-
lar multiplications: one for each internal node when going up the (product)
tree, and two for each internal node when going down the (remainder) tree.
The recursive variant might be performed in parallel in O(log k) operations
using O(k/ log k) processors.

�
�

�
�

�

@
@
@
@
@

�
��

@
@@

�
��

@
@@

1/(x1x2x3x4)

1/(x1x2) 1/(x3x4)

1/x1 1/x2 1/x3 1/x4

Figure 2.3: A recursive variant of Algorithm MultipleInversion. First
go up the tree, building x1x2 mod N from x1 and x2 in the left branch,
x3x4 mod N in the right branch, and x1x2x3x4 mod N at the root of the
tree. Then invert the root of the tree. Finally go down the tree, multiplying
1/(x1x2x3x4) by the stored value x3x4 to get 1/(x1x2), and so on.

A dual case is when there are several moduli but the number to invert
is fixed. Say we want to compute 1/x mod N1, . . . , 1/x mod Nk. We illus-
trate a possible algorithm in the case k = 4. First compute N = N1 . . . Nk

74 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

using a product tree like that in Figure 2.3, for example first compute N1N2

and N3N4, then multiply both to get N = (N1N2)(N3N4). Then compute
y = 1/x mod N , and go down the tree, while reducing the residue at each
node. In our example we compute z = y mod (N1N2) in the left branch,
then z mod N1 yields 1/x mod N1. An important difference between this al-
gorithm and the algorithm illustrated in Figure 2.3 is that here, the numbers
grow while going up the tree. Thus, depending on the sizes of x and the Nj,
this algorithm might be of theoretical interest only.

2.6 Modular Exponentiation

Modular exponentiation is the most time-consuming mathematical opera-
tion in several cryptographic algorithms. The well-known RSA public-key
cryptosystem is based on the fact that computing

c = ae mod N (2.4)

is relatively easy, but recovering a from c, e and N is difficult when N has at
least two (unknown) large prime factors. The discrete logarithm problem is
similar: here c, a and N are given, and one looks for e satisfying Eqn. (2.4).
In this case the problem is difficult when N has at least one large prime
factor (for example, N could be prime). The discrete logarithm problem is
the basis of the El Gamal cryptosystem, and a closely related problem is the
basis of the Diffie-Hellman key exchange protocol.

When the exponent e is fixed (or known to be small), an optimal sequence
of squarings and multiplications might be computed in advance. This is
related to the classical addition chain problem: What is the smallest chain
of additions to reach the integer e, starting from 1? For example, if e = 15,
a possible chain is:

1, 1 + 1 = 2, 1 + 2 = 3, 1 + 3 = 4, 3 + 4 = 7, 7 + 7 = 14, 1 + 14 = 15.

The length of a chain is defined to be the number of additions needed to com-
pute it (the above chain has length 6). An addition chain readily translates
to a multiplication chain:

a, a · a = a2, a · a2 = a3, a · a3 = a4, a3 · a4 = a7, a7 · a7 = a14, a · a14 = a15.

A shorter chain for e = 15 is:

1, 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, 5 + 5 = 10, 5 + 10 = 15.

Modern Computer Arithmetic, §2.6 75

This chain is the shortest possible for e = 15, so we write σ(15) = 5, where
in general σ(e) denotes the length of the shortest addition chain for e. In
the case where e is small, and an addition chain of shortest length σ(e)
is known for e, computing ae mod N may be performed in σ(e) modular
multiplications.

When e is large and (a,N) = 1, then e might be reduced modulo φ(N),
where φ(N) is Euler’s totient function, i.e., the number of integers in [1, N]
which are relatively prime to N . This is because aφ(N) = 1 mod N whenever
(a,N) = 1 (Fermat’s little theorem).

Since φ(N) is a multiplicative function, it is easy to compute φ(N) if we
know the prime factorisation of N . For example,

φ(1001) = φ(7 · 11 · 13) = (7− 1)(11− 1)(13− 1) = 720,

and 2009 = 569 mod 720, so 172009 = 17569 mod 1001.
Assume now that e is smaller than φ(N). Since a lower bound on the

length σ(e) of the addition chain for e is lg e, this yields a lower bound
(lg e)M(n) for modular exponentiation, where n is the size of N . When e
is of size k, a modular exponentiation costs O(kM(n)). For k = n, the cost
O(nM(n)) of modular exponentiation is much more than the cost of oper-
ations considered in Chapter 1, with O(M(n) logn) for the more expensive
ones there. The different algorithms presented in this section save only a
constant factor compared to binary exponentiation (§2.6.1).
Remark: when a fits in one word but N does not, the shortest addition
chain for e might not be the best way to compute ae mod N , since in this
case computing a · aj mod N is cheaper than computing ai · aj mod N for
i ≥ 2.

2.6.1 Binary Exponentiation

A simple (and not far from optimal) algorithm for modular exponentiation is
binary (modular) exponentiation. Two variants exist: left-to-right and right-
to-left. We give the former in Algorithm LeftToRightBinaryExp and leave
the latter as an exercise for the reader.

Left-to-right binary exponentiation has two advantages over right-to-left
exponentiation:

• it requires only one auxiliary variable, instead of two for the right-to-
left exponentiation: one to store successive values of a2

i

, and one to
store the result;

76 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm 2.12 LeftToRightBinaryExp
Input: a, e, N positive integers
Output: x = ae mod N
1: let (eℓeℓ−1 . . . e1e0) be the binary representation of e, with eℓ = 1
2: x← a
3: for i from ℓ− 1 downto 0 do
4: x← x2 mod N
5: if ei = 1 then x← ax mod N .

• in the case where a is small, the multiplications ax at step 5 always
involve a small operand.

If e is a random integer of ℓ+1 bits, step 5 will be performed on average ℓ/2
times, giving average cost 3ℓM(n)/2.

Example: for the exponent e = 3 499 211 612, which is

(11 010 000 100 100 011 011 101 101 011 100)2

in binary, Algorithm LeftToRightBinaryExp performs 31 squarings and
15 multiplications (one for each 1-bit, except the most significant one).

2.6.2 Exponentiation With a Larger Base

Compared to binary exponentiation, base 2k exponentiation reduces the
number of multiplications ax mod N (Algorithm LeftToRightBinaryExp,
step 5). The idea is to precompute small powers of a mod N :

Algorithm 2.13 BaseKExp
Input: a, e, N positive integers
Output: x = ae mod N
1: precompute t[i] := ai mod N for 1 ≤ i < 2k

2: let (eℓeℓ−1 . . . e1e0) be the base 2k representation of e, with eℓ 6= 0
3: x← t[eℓ]
4: for i from ℓ− 1 downto 0 do
5: x← x2k mod N
6: if ei 6= 0 then x← t[ei]x mod N .

The precomputation cost is (2k−2)M(n), and if the digits ei are random
and uniformly distributed in Z ∩ [0, 2k), then the modular multiplication at

Modern Computer Arithmetic, §2.6 77

step 6 of BaseKExp is performed with probability 1− 2−k. If e has n bits,
the number of loops is about n/k. Ignoring the squares at step 5 whose total
cost depends on kℓ ≈ n (independent of k), the total expected cost in terms
of multiplications modulo N is:

2k − 2 + n(1− 2−k)/k.

For k = 1 this formula gives n/2; for k = 2 it gives 3n/8 + 2, which is faster
for n > 16; for k = 3 it gives 7n/24+6, which is faster than the k = 2 formula
for n > 48. When n is large, the optimal value of k satisfies k22k ≈ n/ ln 2.
A minor disadvantage of this algorithm is its memory usage, since Θ(2k)
precomputed entries have to be stored. This is not a serious problem if we
choose the optimal value of k (or a smaller value), because then the number
of precomputed entries to be stored is o(n).

Example: consider the exponent e = 3 499 211 612. Algorithm BaseKExp
performs 31 squarings independently of k, thus we count multiplications only.
For k = 2, we have e = (3 100 210 123 231 130)4: Algorithm BaseKExp
performs two multiplications to precompute a2 and a3, and 11 multiplications
for the non-zero digits of e in base 4 (except for the leading digit), thus a total
of 13. For k = 3, we have e = (32 044 335 534)8, and the algorithm performs 6
multiplications to precompute a2, a3, . . . , a7, and 9 multiplications in step 6,
thus a total of 15.

The last example illustrates two facts. First, if some digits (here 6 and 7)
do not appear in the base-2k representation of e, then we do not need to
precompute the corresponding powers of a. Second, when a digit is even, say
ei = 2, instead of doing three squarings and multiplying by a2, we could do
two squarings, multiply by a, and perform a last squaring. These considera-
tions lead to Algorithm BaseKExpOdd.
The correctness of steps 7–9 follows from:

x2ka2
md = (x2k−m

ad)2
m

.

On the previous example, with k = 3, this algorithm performs only four
multiplications in step 1 (to precompute a2 then a3, a5, a7), then nine multi-
plications in step 8.

2.6.3 Sliding Window and Redundant Representation

The “sliding window” algorithm is a straightforward generalization of Algo-
rithm BaseKExpOdd. Instead of cutting the exponent into fixed parts of k

78 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm 2.14 BaseKExpOdd
Input: a, e, N positive integers
Output: x = ae mod N
1: precompute a2 then t[i] := ai mod N for i odd, 1 ≤ i < 2k

2: let (eℓeℓ−1 . . . e1e0) be the base 2k representation of e, with eℓ 6= 0
3: write eℓ = 2md with d odd
4: x← t[d], x← x2m mod N
5: for i from ℓ− 1 downto 0 do
6: write ei = 2md with d odd (if ei = 0 then m = d = 0)
7: x← x2k−m

mod N
8: if ei 6= 0 then x← t[d]x mod N
9: x← x2m mod N .

bits each, the idea is to divide it into windows, where two adjacent windows
might be separated by a block of zero or more 0-bits. The decomposition
starts from the least significant bits. For example, with e = 3 499 211 612, or
in binary:

1︸︷︷︸
e8

101︸︷︷︸
e7

00 001︸︷︷︸
e6

001︸︷︷︸
e5

00 011︸︷︷︸
e4

011︸︷︷︸
e3

101︸︷︷︸
e2

101︸︷︷︸
e1

0 111︸︷︷︸
e0

00.

Here there are 9 windows (indicated by e8, ..., e0 above) and we perform
only 8 multiplications, an improvement of one multiplication over Algorithm
BaseKExpOdd. On average, the sliding window base 2k algorithm leads
to about n/(k + 1) windows instead of n/k with fixed windows.

Another improvement may be feasible when division is feasible (and
cheap) in the underlying group. For example, if we encounter three consecu-
tive ones, say 111, in the binary representation of e, we may replace some bits
by −1, denoted by 1̄, as in 1001̄. We have thus replaced three multiplications
by one multiplication and one division, in other words x7 = x8 · x−1. For our
running example, this gives:

e = 11 010 000 100 100 100 1̄00 01̄0 01̄0 1̄00 1̄00,

which has only 10 non-zero digits, apart from the leading one, instead of 15
with bits 0 and 1 only. The redundant representation with bits {0, 1, 1̄} is
called the Booth representation. It is a special case of the Avizienis signed-
digit redundant representation. Signed-digit representations exist in any base.

Modern Computer Arithmetic, §2.7 79

For simplicity we have not distinguished between the cost of multiplica-
tion and the cost of squaring (when the two operands in the multiplication
are known to be equal), but this distinction is significant in some applications
(e.g., elliptic curve cryptography). Note that, when the underlying group op-
eration is denoted by addition rather than multiplication, as is usually the
case for abelian groups (such as groups defined over elliptic curves), then
the discussion above applies with “multiplication” replaced by “addition”,
“division” by “subtraction”, and “squaring” by “doubling”.

2.7 Chinese Remainder Theorem

In applications where integer or rational results are expected, it is often
worthwhile to use a “residue number system” (as in §2.1.3) and perform all
computations modulo several small primes (or pairwise coprime integers).
The final result can then be recovered via the Chinese Remainder Theorem
(CRT). For such applications, it is important to have fast conversion routines
from integer to modular representation, and vice versa.

The integer to modular conversion problem is the following: given an
integer x, and several pairwise coprime moduli mi, 1 ≤ i ≤ k, how to effi-
ciently compute xi = x mod mi, for 1 ≤ i ≤ k? This is the remainder tree
problem of Algorithm IntegerToRNS, which is also discussed in §2.5.1 and
Exercise 1.35.

Algorithm 2.15 IntegerToRNS

Input: integer x, moduli m1, m2, . . . , mk pairwise coprime, k ≥ 1
Output: xi = x mod mi for 1 ≤ i ≤ k
1: if k ≤ 2 then
2: return x1 = x mod m1, . . . , xk = x mod mk

3: ℓ← ⌊k/2⌋
4: M1 ← m1m2 · · ·mℓ, M2 ← mℓ+1 · · ·mk ⊲ might be precomputed
5: x1, . . . , xℓ ← IntegerToRNS(x mod M1, m1, . . . , mℓ)
6: xℓ+1, . . . , xk ← IntegerToRNS(x mod M2, mℓ+1, . . . , mk).

If all moduli mi have the same size, and if the size n of x is com-
parable to that of the product m1m2 · · ·mk, the cost T (k) of Algorithm
IntegerToRNS satisfies the recurrence T (n) = 2D(n/2) + 2T (n/2), which
yields T (n) = O(M(n) logn). Such a conversion is therefore more expensive

80 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

than a multiplication or division, and is comparable in complexity terms to
a base conversion or a gcd.

The converse CRT reconstruction problem is the following: given the xi,
how to efficiently reconstruct the unique integer x, 0 ≤ x < m1m2 · · ·mk,
such that x = xi mod mi, for 1 ≤ i ≤ k? Algorithm RNSToInteger per-
forms that conversion, where the values u, v at step 7 might be precomputed
if several conversions are made with the same moduli, and step 11 ensures
that the final result x lies in the interval [0,M1M2).

Algorithm 2.16 RNSToInteger

Input: residues xi, 0 ≤ xi < mi for 1 ≤ i ≤ k, mi pairwise coprime
Output: 0 ≤ x < m1m2 · · ·mk with x = xi mod mi

1: if k = 1 then
2: return x1

3: ℓ← ⌊k/2⌋
4: M1 ← m1m2 · · ·mℓ, M2 ← mℓ+1 · · ·mk ⊲ might be precomputed
5: X1 ← RNSToInteger([x1, . . . , xℓ], [m1, . . . , mℓ])
6: X2 ← RNSToInteger([xℓ+1, . . . , xk], [mℓ+1, . . . , mk])
7: compute u, v such that uM1 + vM2 = 1 ⊲ might be precomputed
8: λ1 ← uX2 mod M2, λ2 ← vX1 mod M1

9: x← λ1M1 + λ2M2

10: if x ≥M1M2 then
11: x← x−M1M2.

To see that Algorithm RNSToInteger is correct, consider an integer i,
1 ≤ i ≤ k, and show that x = xi mod mi. If k = 1, it is trivial. Assume
k ≥ 2, and without loss of generality 1 ≤ i ≤ ℓ. Since M1 is a multiple of
mi, we have x mod mi = (x mod M1) mod mi, where

x mod M1 = λ2M2 mod M1 = vX1M2 mod M1 = X1 mod M1,

and the result follows from the induction hypothesis that X1 = xi mod mi.
Like IntegerToRNS, Algorithm RNSToInteger costs O(M(n) logn)

for M = m1m2 · · ·mk of size n, assuming that the mi are of equal sizes.

The CRT reconstruction problem is analogous to the Lagrange polynomial
interpolation problem: find a polynomial of minimal degree interpolating
given values xi at k points mi.

Modern Computer Arithmetic, §2.8 81

A “flat” variant of the explicit Chinese remainder reconstruction is the
following, taking for example k = 3:

x = λ1x1 + λ2x2 + λ3x3,

where λi = 1 mod mi, and λi = 0 mod mj for j 6= i. In other words, λi is
the reconstruction of x1 = 0, . . . , xi−1 = 0, xi = 1, xi+1 = 0, . . . , xk = 0. For
example, with m1 = 11, m2 = 13 and m3 = 17 we get:

x = 221x1 + 1496x2 + 715x3.

To reconstruct the integer corresponding to x1 = 2, x2 = 3, x3 = 4, we
get x = 221 · 2 + 1496 · 3 + 715 · 4 = 7790, which after reduction modulo
11 · 13 · 17 = 2431 gives 497.

2.8 Exercises

Exercise 2.1 In §2.1.3 we considered the representation of nonnegative integers
using a residue number system. Show that a residue number system can also
be used to represent signed integers, provided their absolute values are not too
large. (Specifically, if relatively prime moduli m1,m2, . . . ,mk are used, and B =
m1m2 · · ·mk, the integers x should satisfy |x| < B/2.)

Exercise 2.2 Suppose two nonnegative integers x and y are represented by their
residues modulo a set of relatively prime moduli m1,m2, . . . ,mk as in §2.1.3. Con-
sider the comparison problem: is x < y? Is it necessary to convert x and y back to
a standard (non-CRT) representation in order to answer this question? Similarly,
if a signed integer x is represented as in Exercise 2.1, consider the sign detection
problem: is x < 0?

Exercise 2.3 Consider the use of redundant moduli in the Chinese remainder
representation. In other words, using the notation of Exercise 2.2, consider the
case that x could be reconstructed without using all the residues. Show that this
could be useful for error detection (and possibly error correction) if arithmetic
operations are performed on unreliable hardware.

Exercise 2.4 Consider the two complexity bounds O(M(d log(Nd))) and
O(M(d)M(logN)) given at the end of §2.1.5. Compare the bounds in three cases:
(a) d ≪ N ; (b) d ∼ N ; (c) d ≫ N . Assume two subcases for the multiplication
algorithm: (i) M(n) = O(n2); (ii) M(n) = O(n log n). (For the sake of simplicity,
ignore any log log factors.)

82 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Exercise 2.5 Show that, if a symmetric representation in [−N/2, N/2) is used
in Algorithm ModularAdd (§2.2), then the probability that we need to add or
subtract N is 1/4 if N is even, and (1 − 1/N2)/4 if N is odd (assuming in both
cases that a and b are uniformly distributed).

Exercise 2.6 Write down the complexity of the Montgomery-Svoboda algorithm
(§2.4.2, page 67) for k steps. For k = 3, use van der Hoeven’s relaxed Karatsuba
multiplication [124] to save one M(n/3) product.

Exercise 2.7 Assume you have an FFT algorithm computing products modulo
2n + 1. Prove that, with some preconditioning, you can perform a division with
remainder of a 2n-bit integer by an n-bit integer as fast as 1.5 multiplications of
n bits by n bits.

Exercise 2.8 Assume you know p(x) mod (xn1−1) and p(x) mod (xn2−1), where
p(x) ∈ F [x] has degree n− 1, and n1 > n2, and F is a field. Up to which value of
n can you uniquely reconstruct p? Design a corresponding algorithm.

Exercise 2.9 Consider the problem of computing the Fourier transform of a vec-
tor a = [a0, a1, . . . , aK−1], defined in Eqn. (2.1), when the size K is not a power
of two. For example, K might be an odd prime or an odd prime power. Can you
find an algorithm to do this in O(K logK) operations?

Exercise 2.10 Consider the problem of computing the cyclic convolution of two
K-vectors, where K is not a power of two. (For the definition, with K replaced by
N , see §3.3.1.) Show that the cyclic convolution can be computed using FFTs on
2λ points for some suitable λ, or by using DFTs on K points (see Exercise 2.9).
Which method is better?

Exercise 2.11 Devise a parallel version of Algorithm MultipleInversion as out-
lined in §2.5.1. Analyse its time and space complexity. Try to minimise the num-
ber of parallel processors required while achieving a parallel time complexity of
O(log k).

Exercise 2.12 Analyse the complexity of the algorithm outlined at the end of
§2.5.1 to compute 1/x mod N1, . . . , 1/x mod Nk, when all the Ni have size n, and
x has size ℓ. For which values of n, ℓ is it faster than the naive algorithm which
computes all modular inverses separately? [Assume M(n) is quasi-linear, and
neglect multiplicative constants.]

Exercise 2.13 Write a RightToLeftBinaryExp algorithm and compare it with
Algorithm LeftToRightBinaryExp of §2.6.1.

Modern Computer Arithmetic, §2.9 83

Exercise 2.14 Investigate heuristic algorithms for obtaining close-to-optimal ad-
dition (or multiplication) chains when the cost of a general addition a + b (or
multiplication a · b) is λ times the cost of duplication a + a (or squaring a · a),
and λ is some fixed positive constant. (This is a reasonable model for modular
exponentiation, because multiplication mod N is generally more expensive than
squaring mod N . It is also a reasonable model for operations in groups defined
by elliptic curves, since in this case the formulæ for addition and duplication are
usually different and have different costs.)

2.9 Notes and References

Several number-theoretic algorithms make heavy use of modular arithmetic, in
particular integer factorization algorithms (for example: Pollard’s ρ algorithm and
the elliptic curve method).

Another important application of modular arithmetic in computer algebra is
computing the roots of a univariate polynomial over a finite field, which requires
efficient arithmetic over Fp[x]. See for example the excellent book “MCA” by von
zur Gathen and Gerhard [100].

We say in §2.1.3 that residue number systems can only be used when N factors
into N1N2 . . .; this is not quite true, since Bernstein and Sorenson show in [24] how
to perform modular arithmetic using a residue number system.

For notes on the Kronecker-Schönhage trick, see §1.9.
Barrett’s algorithm is described in [14], which also mentions the idea of us-

ing two short products. The original description of Montgomery’s REDC algo-
rithm is [170]. It is now widely used in several applications. However, only a few
authors considered using a reduction factor which is not of the form βn, among
themMcLaughlin [161] and Mihailescu [165]. The Montgomery-Svoboda algorithm
(§2.4.2) is also called “Montgomery tail tayloring” by Hars [113], who attributes
Svoboda’s algorithm — more precisely its variant with the most significant word
being β − 1 instead of β — to Quisquater. The folding optimization of REDC
described in §2.4.2 (Subquadratic Montgomery Reduction) is an LSB-extension
of the algorithm described in the context of Barrett’s algorithm by Hasenplaugh,
Gaubatz and Gopal [118]. Amongst the algorithms not covered in this book, we
mention the “bipartite modular multiplication” of Kaihara and Takagi [134], which
involves performing both MSB- and LSB-division in parallel.

The description of McLaughlin’s algorithm in §2.4.3 follows [161, Variation 2];
McLaughlin’s algorithm was reformulated in a polynomial context by
Mihailescu [165].

Many authors have proposed FFT algorithms, or improvements of such algo-

84 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

rithms, and applications such as fast computation of convolutions. Some references
are Aho, Hopcroft and Ullman [3]; Nussbaumer [177]; Borodin and Munro [35],
who describe the polynomial approach; Van Loan [223] for the linear algebra ap-
proach; and Pollard [186] for the FFT over finite fields. Rader [188] considered the
case where the number of data points is a prime, and Winograd [231] generalised
Rader’s algorithm to prime powers. Bluestein’s algorithm [30] is also applicable
in these cases. In Bernstein [22, §23] the reader will find some historical remarks
and several nice applications of the FFT.

The Schönhage-Strassen algorithm first appeared in [200]. Recently Fürer [98]
has proposed an integer multiplication algorithm that is asymptotically faster than
the Schönhage-Strassen algorithm. Fürer’s algorithm almost achieves the conjec-
tured best possible Θ(n log n) running time.

Concerning special moduli, Percival considers in [184] the case N = a ± b
where both a and b are highly composite; this is a generalization of the case
N = βn ± 1. The pseudo-Mersenne primes of §2.4.4 are recommended by the
National Institute of Standards and Technology (NIST) [75]. See also the book by
Hankerson, Menezes and Vanstone [110].

Algorithm MultipleInversion — also known as “batch inversion” — is due
to Montgomery [171]. The application of Barrett’s algorithm for an implicitly
invariant divisor was suggested by Granlund.

Modular exponentiation and cryptographic algorithms are described in much
detail in the book by Menezes, van Oorschot and Vanstone [162, Chapter 14].
A detailed description of the best theoretical algorithms, with references, can be
found in Bernstein [18]. When both the modulus and base are invariant, mod-
ular exponentiation with k-bit exponent and n-bit modulus can be performed
in time O((k/ log k)M(n)), after a precomputation of O(k/ log k) powers in time
O(kM(n)). Take for example b = 2k/t in Note 14.112 and Algorithm 14.109
of [162], with t log t ≈ k, where the powers ab

i

mod N for 0 ≤ i < t are precom-
puted. An algorithm of same complexity using a DBNS (Double-Base Number
System) was proposed by Dimitrov, Jullien and Miller [86], however with a larger
table of Θ(k2) precomputed powers.

Original papers on Booth recoding, SRT division, etc., are reprinted in the
book by Swartzlander [213].

A quadratic algorithm for CRT reconstruction is discussed in [73]; Möller gives
some improvements in the case of a small number of small moduli known in ad-
vance [168]. Algorithm IntegerToRNS can be found in Borodin and Moenck [34].
The explicit Chinese Remainder Theorem and its applications to modular expo-
nentiation are discussed by Bernstein and Sorenson in [24].

Chapter 3

Floating-Point Arithmetic

This chapter discusses the basic operations — addition, subtrac-
tion, multiplication, division, square root, conversion — on ar-
bitrary precision floating-point numbers, as Chapter 1 does for
arbitrary precision integers. More advanced functions like ele-
mentary and special functions are covered in Chapter 4. This
chapter largely follows the IEEE 754 standard, and extends it in
a natural way to arbitrary precision; deviations from IEEE 754
are explicitly mentioned. By default IEEE 754 refers to the 2008
revision, known as IEEE 754-2008; we write IEEE 754-1985 when
we explicitly refer to the 1985 initial standard. Topics not dis-
cussed here include: hardware implementations, fixed-precision
implementations, special representations.

3.1 Representation

The classical non-redundant representation of a floating-point number x in
radix β > 1 is the following (other representations are discussed in §3.8):

x = (−1)s ·m · βe, (3.1)

where (−1)s, s ∈ {0, 1}, is the sign, m ≥ 0 is the significand , and the integer
e is the exponent of x. In addition, a positive integer n defines the precision
of x, which means that the significand m contains at most n significant digits
in radix β.

An important special case ism = 0 representing zero. In this case the sign

86 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

s and exponent e are irrelevant and may be used to encode other information
(see for example §3.1.3).

For m 6= 0, several semantics are possible; the most common ones are:

• β−1 ≤ m < 1, then βe−1 ≤ |x| < βe. In this case m is an integer
multiple of β−n. We say that the unit in the last place of x is βe−n, and
we write ulp(x) = βe−n. For example, x = 3.1416 with radix β = 10
is encoded by m = 0.31416 and e = 1. This is the convention that we
will use in this chapter;

• 1 ≤ m < β, then βe ≤ |x| < βe+1, and ulp(x) = βe+1−n. With radix
ten the number x = 3.1416 is encoded by m = 3.1416 and e = 0. This
is the convention adopted in the IEEE 754 standard;

• we can also use an integer significand βn−1 ≤ m < βn, then βe+n−1 ≤
|x| < βe+n, and ulp(x) = βe. With radix ten the number x = 3.1416 is
encoded by m = 31416 and e = −4.

Note that in the above three cases, there is only one possible representation
of a non-zero floating-point number: we have a canonical representation.
In some applications, it is useful to relax the lower bound on nonzero m,
which in the three cases above gives respectively 0 < m < 1, 0 < m <
β, and 0 < m < βn, with m an integer multiple of βe−n, βe+1−n, and 1
respectively. In this case, there is no longer a canonical representation. For
example, with an integer significand and a precision of 5 digits, the number
3.1400 might be encoded by (m = 31400, e = −4), (m = 03140, e = −3), or
(m = 00314, e = −2). This non-canonical representation has the drawback
that the most significant non-zero digit of the significand is not known in
advance. The unique encoding with a non-zero most significant digit, i.e.,
(m = 31400, e = −4) here, is called the normalised — or simply normal —
encoding.

The significand is also sometimes called the mantissa or fraction. The
above examples demonstrate that the different significand semantics corre-
spond to different positions of the decimal (or radix β) point, or equivalently
to different biases of the exponent. We assume in this chapter that both the
radix β and the significand semantics are implicit for a given implementation,
thus are not physically encoded.

The words “base” and “radix” have similar meanings. For clarity we
reserve “radix” for the constant β in a floating-point representation such

Modern Computer Arithmetic, §3.1 87

as (3.1). The significand m and exponent e might be stored in a different
base, as discussed below.

3.1.1 Radix Choice

Most floating-point implementations use radix β = 2 or a power of two,
because this is convenient and efficient on binary computers. For a radix β
which is not a power of 2, two choices are possible:

• store the significand in base β, or more generally in base βk for an
integer k ≥ 1. Each digit in base βk requires ⌈k lg β⌉ bits. With such a
choice, individual digits can be accessed easily. With β = 10 and k = 1,
this is the “Binary Coded Decimal” or BCD encoding: each decimal
digit is represented by 4 bits, with a memory loss of about 17% (since
lg(10)/4 ≈ 0.83). A more compact choice is radix 103, where 3 decimal
digits are stored in 10 bits, instead of in 12 bits with the BCD format.
This yields a memory loss of only 0.34% (since lg(1000)/10 ≈ 0.9966);

• store the significand in binary. This idea is used in Intel’s Binary-
Integer Decimal (BID) encoding, and in one of the two decimal encod-
ings in IEEE 754-2008. Individual digits can not be accessed directly,
but one can use efficient binary hardware or software to perform oper-
ations on the significand.

A drawback of the binary encoding is that, during the addition of two
arbitrary-precision numbers, it is not easy to detect if the significand ex-
ceeds the maximum value βn − 1 (when considered as an integer) and thus
if rounding is required. Either βn is precomputed, which is only realistic if
all computations involve the same precision n, or it is computed on the fly,
which might result in increased complexity (see Chapter 1 and §2.6.1).

3.1.2 Exponent Range

In principle, one might consider an unbounded exponent. In other words, the
exponent e might be encoded by an arbitrary-precision integer (see Chap-
ter 1). This would have the great advantage that no underflow or overflow
could occur (see below). However, in most applications, an exponent en-
coded in 32 bits is more than enough: this enables us to represent values up

88 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

to about 10646 456 993 for β = 2. A result exceeding this value most proba-
bly corresponds to an error in the algorithm or the implementation. Using
arbitrary-precision integers for the exponent induces an extra overhead that
slows down the implementation in the average case, and it usually requires
more memory to store each number.

Thus, in practice the exponent nearly always has a limited range emin ≤
e ≤ emax. We say that a floating-point number is representable if it can be
represented in the form (−1)s · m · βe with emin ≤ e ≤ emax. The set of
representable numbers clearly depends on the significand semantics. For the
convention we use here, i.e., β−1 ≤ m < 1, the smallest positive representable
floating-point number is βemin−1, and the largest one is βemax(1− β−n).

Other conventions for the significand yield different exponent ranges. For
example the double-precision format — called binary64 in IEEE 754-2008
— has emin = −1022, emax = 1023 for a significand in [1, 2); this corresponds
to emin = −1021, emax = 1024 for a significand in [1/2, 1), and emin = −1074,
emax = 971 for an integer significand in [252, 253).

3.1.3 Special Values

With a bounded exponent range, if we want a complete arithmetic, we need
some special values to represent very large and very small values. Very small
values are naturally flushed to zero, which is a special number in the sense
that its significand is m = 0, which is not normalised. For very large values,
it is natural to introduce two special values −∞ and +∞, which encode large
non-representable values. Since we have two infinities, it is natural to have
two zeros −0 and +0, for example 1/(−∞) = −0 and 1/(+∞) = +0. This is
the IEEE 754 choice. Another possibility would be to have only one infinity
∞ and one zero 0, forgetting the sign in both cases.

An additional special value is Not a Number (NaN), which either repre-
sents an uninitialised value, or is the result of an invalid operation like

√
−1

or (+∞)− (+∞). Some implementations distinguish between different kinds
of NaN, in particular IEEE 754 defines signalling and quiet NaNs.

3.1.4 Subnormal Numbers

Subnormal numbers are required by the IEEE 754 standard, to allow what is
called gradual underflow between the smallest (in absolute value) non-zero

Modern Computer Arithmetic, §3.1 89

normalised numbers and zero. We first explain what subnormal numbers are;
then we will see why they are not necessary in arbitrary precision.

Assume we have an integer significand in [βn−1, βn) where n is the pre-
cision, and an exponent in [emin, emax]. Write η = βemin. The two smallest
positive normalised numbers are x = βn−1η and y = (βn−1 + 1)η. The dif-
ference y − x equals η, which is tiny compared to x. In particular, y− x can
not be represented exactly as a normalised number (assuming βn−1 > 1) and
will be rounded to zero in “rounding to nearest” mode (§3.1.9). This has the
unfortunate consequence that instructions like:

if (y != x) then

z = 1.0/(y - x);

will produce a “division by zero” error when executing 1.0/(y - x).

Subnormal numbers solve this problem. The idea is to relax the condition
βn−1 ≤ m for the exponent emin. In other words, we include all numbers of
the formm·βemin for 1 ≤ m < βn−1 in the set of valid floating-point numbers.
One could also permit m = 0, and then zero would be a subnormal number,
but we continue to regard zero as a special case.

Subnormal numbers are all positive integer multiples of ±η, with a mul-
tiplier m, 1 ≤ m < βn−1. The difference between x = βn−1η and y =
(βn−1 + 1)η is now representable, since it equals η, the smallest positive
subnormal number. More generally, all floating-point numbers are multiples
of η, likewise for their sum or difference (in other words, operations in the
subnormal domain correspond to fixed-point arithmetic). If the sum or dif-
ference is non-zero, it has magnitude at least η, thus can not be rounded to
zero. Thus the “division by zero” problem mentioned above does not occur
with subnormal numbers.

In the IEEE 754 double-precision format — called binary64 in IEEE
754-2008 — the smallest positive normal number is 2−1022, and the smallest
positive subnormal number is 2−1074. In arbitrary precision, subnormal num-
bers seldom occur, since usually the exponent range is huge compared to the
expected exponents in a given application. Thus the only reason for imple-
menting subnormal numbers in arbitrary precision is to provide an extension
of IEEE 754 arithmetic. Of course, if the exponent range is unbounded, then
there is absolutely no need for subnormal numbers, because any nonzero
floating-point number can be normalised.

90 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

3.1.5 Encoding

The encoding of a floating-point number x = (−1)s · m · βe is the way the
values s, m and e are stored in the computer. Remember that β is implicit,
i.e., is considered fixed for a given implementation; as a consequence, we do
not consider here mixed radix operations involving numbers with different
radices β and β ′.

We have already seen that there are several ways to encode the significand
m when β is not a power of two: in base-βk or in binary. For normal numbers
in radix 2, i.e., 2n−1 ≤ m < 2n, the leading bit of the significand is necessarily
1, thus one might choose not the encode it in memory, to gain an extra bit of
precision. This is called the implicit leading bit, and it is the choice made in
the IEEE 754 formats. For example the double-precision format has a sign
bit, an exponent field of 11 bits, and a significand of 53 bits, with only 52
bits stored, which gives a total of 64 stored bits:

sign (biased) exponent significand
(1 bit) (11 bits) (52 bits, plus implicit leading bit)

A nice consequence of this particular encoding is the following. Let x be
a double-precision number, neither subnormal, ±∞, NaN, nor the largest
normal number in absolute value. Consider the 64-bit encoding of x as a 64-
bit integer, with the sign bit in the most significant bit, the exponent bits in
the next most significant bits, and the explicit part of the significand in the
low significant bits. Adding 1 to this 64-bit integer yields the next double-
precision number to x, away from zero. Indeed, if the significand m is smaller
than 253 − 1, m becomes m + 1 which is smaller than 253. If m = 253 − 1,
then the lowest 52 bits are all set, and a carry occurs between the significand
field and the exponent field. Since the significand field becomes zero, the
new significand is 252, taking into account the implicit leading bit. This
corresponds to a change from (253 − 1) · 2e to 252 · 2e+1, which is exactly the
next number away from zero. Thanks to this consequence of the encoding, an
integer comparison of two words (ignoring the actual type of the operands)
should give the same result as a floating-point comparison, so it is possible
to sort normal positive floating-point numbers as if they were integers of the
same length (64-bit for double precision).

In arbitrary precision, saving one bit is not as crucial as in fixed (small)
precision, where one is constrained by the word size (usually 32 or 64 bits).
Thus, in arbitrary precision, it is easier and preferable to encode the whole

Modern Computer Arithmetic, §3.1 91

significand. Also, note that having an “implicit bit” is not possible in radix
β > 2, since for a normal number the most significant digit might take several
values, from 1 to β − 1.

When the significand occupies several words, it can be stored in a linked
list, or in an array (with a separate size field). Lists are easier to extend, but
accessing arrays is usually more efficient because fewer memory references
are required in the inner loops and memory locality is better.

The sign s is most easily encoded as a separate bit field, with a non-
negative significand. This is the sign-magnitude encoding. Other possibilities
are to have a signed significand, using either 1’s complement or 2’s comple-
ment, but in the latter case a special encoding is required for zero, if it is
desired to distinguish +0 from −0. Finally, the exponent might be encoded
as a signed word (for example, type long in the C language).

3.1.6 Precision: Local, Global, Operation, Operand

The different operands of a given operation might have different precisions,
and the result of that operation might be desired with yet another precision.
There are several ways to address this issue.

• The precision, say n is attached to a given operation. In this case,
operands with a smaller precision are automatically converted to preci-
sion n. Operands with a larger precision might either be left unchanged,
or rounded to precision n. In the former case, the code implementing
the operation must be able to handle operands with different precisions.
In the latter case, the rounding mode to shorten the operands must be
specified. Note that this rounding mode might differ from that of the
operation itself, and that operand rounding might yield large errors.
Consider for example a = 1.345 and b = 1.234567 with a precision of 4
digits. If b is taken as exact, the exact value of a− b equals 0.110433,
which when rounded to nearest becomes 0.1104. If b is first rounded to
nearest to 4 digits, we get b′ = 1.235, and a − b′ = 0.1100 is rounded
to itself.

• The precision n is attached to each variable. Here again two cases may
occur. If the operation destination is part of the operation inputs, as
in sub(c, a, b), which means c← round(a− b), then the precision of
the result operand c is known, thus the rounding precision is known in

92 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

advance. Alternatively, if no precision is given for the result, one might
choose the maximal (or minimal) precision from the input operands, or
use a global variable, or request an extra precision parameter for the
operation, as in c = sub(a, b, n).

Of course, these different semantics are inequivalent, and may yield different
results. In the following, we consider the case where each variable, including
the destination variable, has its own precision, and no pre-rounding or post-
rounding occurs. In other words, the operands are considered exact to their
full precision.

Rounding is considered in detail in §3.1.9. Here we define what we mean
by the correct rounding of a function.

Definition 3.1.1 Let a, b, . . . be floating-point numbers, f a mathematical
function, n ≥ 1 an integer, and ◦ a rounding mode. We say that c is the
correct roundingof f(a, b, . . .), and we write c = ◦n(f(a, b, . . .)), if c is the
floating-point number closest to f(a, b, . . .) in precision n and according to
the given rounding mode. In case several numbers are at the same distance
from f(a, b, . . .), the rounding mode must define in a deterministic way which
one is “the closest”. When there is no ambiguity, we omit n and write simply
c = ◦(f(a, b, . . .)).

3.1.7 Link to Integers

Most floating-point operations reduce to arithmetic on the significands, which
can be considered as integers as seen at the beginning of this section. There-
fore efficient arbitrary precision floating-point arithmetic requires efficient
underlying integer arithmetic (see Chapter 1).

Conversely, floating-point numbers might be useful for the implementa-
tion of arbitrary precision integer arithmetic. For example, one might use
hardware floating-point numbers to represent an arbitrary precision integer.
Indeed, since a double-precision floating-point number has 53 bits of pre-
cision, it can represent an integer up to 253 − 1, and an integer A can be
represented as: A = an−1β

n−1 + · · ·+ aiβ
i + · · ·+ a1β + a0, where β = 253,

and the ai are stored in double-precision data types. Such an encoding was
popular when most processors were 32-bit, and some had relatively slow in-
teger operations in hardware. Now that most computers are 64-bit, this
encoding is obsolete.

Modern Computer Arithmetic, §3.1 93

Floating-point expansions are a variant of the above. Instead of storing
ai and having βi implicit, the idea is to directly store aiβ

i. Of course, this
only works for relatively small i, i.e., whenever aiβ

i does not exceed the
format range. For example, for IEEE 754 double precision, the maximal
integer precision is 1024 bits. (Alternatively, one might represent an integer
as a multiple of the smallest positive number 2−1074, with a corresponding
maximal precision of 2098 bits.)

Hardware floating-point numbers might also be used to implement the
Fast Fourier Transform (FFT), using complex numbers with floating-point
real and imaginary part (see §3.3.1).

3.1.8 Ziv’s Algorithm and Error Analysis

A rounding boundary is a point at which the rounding function ◦(x) is dis-
continuous.

In fixed precision, for basic arithmetic operations, it is sometimes possi-
ble to design one-pass algorithms that directly compute a correct rounding.
However, in arbitrary precision, or for elementary or special functions, the
classical method is to use Ziv’s algorithm:

1. we are given an input x, a target precision n, and a rounding mode;

2. compute an approximation y with precision m > n, and a correspond-
ing error bound ε such that |y − f(x)| ≤ ε;

3. if [y − ε, y + ε] contains a rounding boundary, increase m and go to
step 2;

4. output the rounding of y, according to the given rounding mode.

The error bound ε at step 2 might be computed either a priori, i.e., from
x and n only, or dynamically, i.e., from the different intermediate values
computed by the algorithm. A dynamic bound will usually be tighter, but
will require extra computations (however, those computations might be done
in low precision).

Depending on the mathematical function to be implemented, one might
prefer an absolute or a relative error analysis. When computing a relative
error bound, at least two techniques are available: one might express the
errors in terms of units in the last place (ulps), or one might express them

94 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

in terms of true relative error. It is of course possible in a given analysis to
mix both kinds of errors, but in general one loses a constant factor — the
radix β — when converting from one kind of relative error to the other kind.

Another important distinction is forward versus backward error analysis.
Assume we want to compute y = f(x). Because the input is rounded, and/or
because of rounding errors during the computation, we might actually com-
pute y′ ≈ f(x′). Forward error analysis will bound |y′−y| if we have a bound
on |x′ − x| and on the rounding errors that occur during the computation.

Backward error analysis works in the other direction. If the computed
value is y′, then backward error analysis will give us a number δ such that,
for some x′ in the ball |x′ − x| ≤ δ, we have y′ = f(x′). This means that the
error is no worse than might have been caused by an error of δ in the input
value. Note that, if the problem is ill-conditioned, δ might be small even if
|y′ − y| is large.

In our error analyses, we assume that no overflow or underflow occurs,
or equivalently that the exponent range is unbounded, unless the contrary is
explicitly stated.

3.1.9 Rounding

There are several possible definitions of rounding. For example probabilistic
rounding — also called stochastic rounding — chooses at random a rounding
towards +∞ or −∞ for each operation. The IEEE 754 standard defines four
rounding modes: towards zero, +∞, −∞ and to nearest (with ties broken to
even). Another useful mode is “rounding away from zero”, which rounds in
the opposite direction from zero: a positive number is rounded towards +∞,
and a negative number towards −∞. If the sign of the result is known, all
IEEE 754 rounding modes might be converted to either rounding to nearest,
rounding towards zero, or rounding away from zero.

Theorem 3.1.1 Consider a floating-point system with radix β and preci-
sion n. Let u be the rounding to nearest of some real x, then the following

Modern Computer Arithmetic, §3.1 95

inequalities hold:

|u− x| ≤ 1

2
ulp(u)

|u− x| ≤ 1

2
β1−n|u|

|u− x| ≤ 1

2
β1−n|x|.

Proof. For x = 0, necessarily u = 0, and the statement holds. Without loss
of generality, we can assume u and x positive. The first inequality is the
definition of rounding to nearest, and the second one follows from ulp(u) ≤
β1−nu. (In the case β = 2, it gives |u− x| ≤ 2−n|u|.) For the last inequality,
we distinguish two cases: if u ≤ x, it follows from the second inequality. If
x < u, then if x and u have the same exponent, i.e., βe−1 ≤ x < u < βe,
then ulp(u) = βe−n ≤ β1−nx. The only remaining case is βe−1 ≤ x < u = βe.
Since the floating-point number preceding βe is βe(1 − β−n), and x was
rounded to nearest, we have |u− x| ≤ βe−n/2 here too.

In order to round according to a given rounding mode, one proceeds as
follows:

1. first round as if the exponent range was unbounded, with the given
rounding mode;

2. if the rounded result is within the exponent range, return this result;

3. otherwise raise the “underflow” or “overflow” exception, and return ±0
or ±∞ accordingly.

For example, assume radix 10 with precision 4, emax = 3, with x = 0.9234·103,
y = 0.7656 · 102. The exact sum x + y equals 0.99996 · 103. With rounding
towards zero, we obtain 0.9999 · 103, which is representable, so there is no
overflow. With rounding to nearest, x+ y rounds to 0.1000 · 104, where the
exponent 4 exceeds emax = 3, so we get +∞ as the result, with an overflow.
In this model, overflow depends not only on the operands, but also on the
rounding mode.

The “round to nearest” mode of IEEE 754 rounds the result of an opera-
tion to the nearest representable number. In case the result of an operation
is exactly halfway between two consecutive numbers, the one with least sig-
nificant bit zero is chosen (for radix 2). For example 1.10112 is rounded with

96 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

a precision of 4 bits to 1.1102, as is 1.11012. However this rule does not
readily extend to an arbitrary radix. Consider for example radix β = 3, a
precision of 4 digits, and the number 1212.111 . . .3. Both 12123 and 12203
end in an even digit. The natural extension is to require the whole significand
to be even, when interpreted as an integer in [βn−1, βn − 1]. In this setting,
(1212.111 . . .)3 rounds to (1212)3 = 5010. (Note that βn is an odd number
here.)

Assume we want to correctly round a real number, whose binary expan-
sion is 2e · 0.1b2 . . . bnbn+1 . . ., to n bits. It is enough to know the values of
r = bn+1 — called the round bit — and that of the sticky bit s, which is 0
when bn+2bn+3 . . . is identically zero, and 1 otherwise. Table 3.1 shows how
to correctly round given r, s, and the given rounding mode; rounding to ±∞
being converted to rounding towards zero or away from zero, according to
the sign of the number. The entry “bn” is for round to nearest in the case of
a tie: if bn = 0 it will be unchanged, but if bn = 1 we add 1 (thus changing
bn to 0).

r s towards zero to nearest away from zero

0 0 0 0 0
0 1 0 0 1
1 0 0 bn 1
1 1 0 1 1

Table 3.1: Rounding rules according to the round bit r and the sticky bit s:
a “0” entry means truncate (round towards zero), a “1” means round away
from zero (add 1 to the truncated significand).

In general, we do not have an infinite expansion, but a finite approxima-
tion y of an unknown real value x. For example, y might be the result of an
arithmetic operation such as division, or an approximation to the value of a
transcendental function such as exp. The following problem arises: given the
approximation y, and a bound on the error |y−x|, is it possible to determine
the correct rounding of x? Algorithm RoundingPossible returns true if
and only if it is possible.

Proof. Since rounding is monotonic, it is possible to determine ◦(x) exactly

Modern Computer Arithmetic, §3.1 97

Algorithm 3.1 RoundingPossible

Input: a floating-point number y = 0.1y2 . . . ym, a precision n ≤ m, an error
bound ε = 2−k, a rounding mode ◦

Output: true when ◦n(x) can be determined for |y − x| ≤ ε
if k ≤ n+ 1 then return false
if ◦ is to nearest then r ← 1 else r ← 0
if yn+1 = r and yn+2 = · · · = yk = 0 then s← 0 else s← 1
if s = 1 then return true else return false.

when ◦(y − 2−k) = ◦(y + 2−k), or in other words when the interval [y − 2−k,
y + 2−k] contains no rounding boundary (or only one as y − 2−k or y+ 2−k).

If k ≤ n + 1, then the interval [−2−k, 2−k] has width at least 2−n, thus
contains at least one rounding boundary in its interior, or two rounding
boundaries, and it is not possible to round correctly. In the case of directed
rounding (resp. rounding to nearest), if s = 0 the approximation y is repre-
sentable (resp. the middle of two representable numbers) in precision n, and it
is clearly not possible to round correctly; if s = 1 the interval [y−2−k, y+2−k]
contains at most one rounding boundary, and if so it is one of the bounds,
thus it is possible to round correctly.

The Double Rounding Problem

When a given real value x is first rounded to precision m, then to precision
n < m, we say that a “double rounding” occurs. The “double rounding
problem” happens when this latter value differs from the direct rounding of
x to the smaller precision n, assuming the same rounding mode is used in all
cases, i.e., when:

◦n(◦m(x)) 6= ◦n(x).

The double rounding problem does not occur for directed rounding modes.
For these rounding modes, the rounding boundaries at the larger precision
m refine those at the smaller precision n, thus all real values x that round to
the same value y at precision m also round to the same value at precision n,
namely ◦n(y).

Consider the decimal value x = 3.14251. Rounding to nearest to 5 digits,
we get y = 3.1425; rounding y to nearest-even to 4 digits, we get 3.142,
whereas direct rounding of x would give 3.143.

98 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

With rounding to nearest mode, the double rounding problem only occurs
when the second rounding involves the even-rule, i.e., the value y = ◦m(x)
is a rounding boundary at precision n. Otherwise y has distance at least
one ulp (in precision m) from a rounding boundary at precision n, and since
|y − x| is bounded by half an ulp (in precision m), all possible values for x
round to the same value in precision n.

Note that the double rounding problem does not occur with all ways of
breaking ties for rounding to nearest (Exercise 3.2).

3.1.10 Strategies

To determine the correct rounding of f(x) with n bits of precision, the best
strategy is usually to first compute an approximation y to f(x) with a working
precision of m = n + h bits, with h relatively small. Several strategies are
possible in Ziv’s algorithm (§3.1.8) when this first approximation y is not
accurate enough, or too close to a rounding boundary:

• compute the exact value of f(x), and round it to the target precision n.
This is possible for a basic operation, for example f(x) = x2, or more
generally f(x, y) = x + y or x × y. Some elementary functions may
yield an exactly representable output too, for example

√
2.25 = 1.5.

An “exact result” test after the first approximation avoids possibly
unnecessary further computations;

• repeat the computation with a larger working precisionm′ = n+h′. As-
suming that the digits of f(x) behave “randomly” and that |f ′(x)/f(x)|
is not too large, using h′ ≈ lg n is enough to guarantee that rounding is
possible with probability 1 − O(1/n). If rounding is still not possible,
because the h′ last digits of the approximation encode 0 or 2h

′ − 1, one
can increase the working precision and try again. A check for exact
results guarantees that this process will eventually terminate, provided
the algorithm used has the property that it gives the exact result if this
result is representable and the working precision is high enough. For
example, the square root algorithm should return the exact result if it
is representable (see Algorithm FPSqrt in §3.5, and also Exercise 3.3).

Modern Computer Arithmetic, §3.2 99

3.2 Addition, Subtraction, Comparison

Addition and subtraction of floating-point numbers operate from the most
significant digits, whereas integer addition and subtraction start from the
least significant digits. Thus completely different algorithms are involved.
Also, in the floating-point case, part or all of the inputs might have no
impact on the output, except in the rounding phase.

In summary, floating-point addition and subtraction are more difficult to
implement than integer addition/subtraction for two reasons:

• scaling due to the exponents requires shifting the significands before
adding or subtracting them. In principle one could perform all opera-
tions using only integer operations, but this might require huge integers,
for example when adding 1 and 2−1000;

• as the carries are propagated from least to most significant digits, one
may have to look at arbitrarily low input digits to guarantee correct
rounding.

In this section, we distinguish between “addition”, where both operands
to be added have the same sign, and “subtraction”, where the operands to
be added have different signs (we assume a sign-magnitude representation).
The case of one or both operands zero is treated separately; in the description
below we assume that all operands are nonzero.

3.2.1 Floating-Point Addition

Algorithm FPadd adds two binary floating-point numbers b and c of the
same sign. More precisely, it computes the correct rounding of b + c, with
respect to the given rounding mode ◦. For the sake of simplicity, we assume
b and c are positive, b ≥ c > 0. It will also be convenient to scale b and c so
that 2n−1 ≤ b < 2n and 2m−1 ≤ c < 2m, where n is the desired precision of
the output, and m ≤ n. Of course, if the inputs b and c to Algorithm FPadd
are scaled by 2k, then to compensate for this the output must be scaled by
2−k. We assume that the rounding mode is to nearest, towards zero, or away
from zero (rounding to ±∞ reduces to rounding towards zero or away from
zero, depending on the sign of the operands).

The values of round(◦, r, s) and round2(◦, a, t) are given in Table 3.2. We
have simplified some of the expressions given in Table 3.2. For example, in

100 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm 3.2 FPadd

Input: b ≥ c > 0 two binary floating-point numbers, a precision n such that
2n−1 ≤ b < 2n, and a rounding mode ◦

Output: a floating-point number a of precision n and scale e such that
a · 2e = ◦(b+ c)

1: split b into bh + bℓ where bh contains the n most significant bits of b.
2: split c into ch + cℓ where ch contains the most significant bits of c, and

ulp(ch) = ulp(bh) = 1 ⊲ ch might be zero
3: ah ← bh + ch, e← 0
4: (c, r, s)← bℓ + cℓ ⊲ see the text
5: (a, t)← (ah + c+ round(◦, r, s), etc.) ⊲ for t see Table 3.2 (upper)
6: if a ≥ 2n then
7: (a, e)← (round2(◦, a, t), e+ 1) ⊲ see Table 3.2 (lower)
8: if a = 2n then (a, e)← (a/2, e+ 1)

9: return (a, e).

the upper half of the table, r ∨ s means 0 if r = s = 0, and 1 otherwise.
In the lower half of the table, 2⌊(a + 1)/4⌋ is (a − 1)/2 if a = 1 mod 4, and
(a+ 1)/2 if a = 3 mod 4.

At step 4 of Algorithm FPadd, the notation (c, r, s) ← bℓ + cℓ means
that c is the carry bit of bℓ + cℓ, r the round bit, and s the sticky bit;
c, r, s ∈ {0, 1}. For rounding to nearest, t = sign(b+ c− a) is a ternary value
which is respectively positive, zero, or negative when a is smaller than, equal
to, or larger than the exact sum b+ c.

Theorem 3.2.1 Algorithm FPadd is correct.

Proof. We have 2n−1 ≤ b < 2n and 2m−1 ≤ c < 2m, with m ≤ n. Thus bh
and ch are the integer parts of b and c, bℓ and cℓ their fractional parts. Since
b ≥ c, we have ch ≤ bh and 2n−1 ≤ bh ≤ 2n − 1, thus 2n−1 ≤ ah ≤ 2n+1 − 2,
and at step 5, 2n−1 ≤ a ≤ 2n+1. If a < 2n, a is the correct rounding of
b+ c. Otherwise, we face the “double rounding” problem: rounding a down
to n bits will give the correct result, except when a is odd and rounding is to
nearest. In that case, we need to know if the first rounding was exact, and
if not in which direction it was rounded; this information is encoded in the
ternary value t. After the second rounding, we have 2n−1 ≤ a ≤ 2n.

Note that the exponent ea of the result lies between eb (the exponent of b,
here we considered the case eb = n) and eb+2. Thus no underflow can occur

Modern Computer Arithmetic, §3.2 101

◦ r s round(◦, r, s) t

towards 0 any any 0 –
away from 0 any any r ∨ s –
to nearest 0 any 0 s
to nearest 1 0 0/1 (even rounding) +1/−1
to nearest 1 6= 0 1 −1

◦ a mod 2 t round2(◦, a, t)

any 0 any a/2
towards 0 1 any (a− 1)/2

away from 0 1 any (a+ 1)/2
to nearest 1 0 2⌊(a + 1)/4⌋
to nearest 1 ±1 (a+ t)/2

Table 3.2: Rounding rules for addition.

in an addition. The case ea = eb + 2 can occur only when the destination
precision is less than that of the operands.

3.2.2 Floating-Point Subtraction

Floating-point subtraction (of positive operands) is very similar to addition,
with the difference that cancellation can occur. Consider for example the
subtraction 6.77823 − 5.98771. The most significant digit of both operands
disappeared in the result 0.79052. This cancellation can be dramatic, as
in 6.7782357934− 6.7782298731 = 0.0000059203, where six digits were can-
celled.

102 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Two approaches are possible, assuming n result digits are wanted, and
the exponent difference between the inputs is d:

• subtract the n − d most-significant digits of the smaller operand from
the nmost-significant digits of the larger operand. If the result has n−e
digits with e > 0, restart with n+ e digits from the larger operand and
(n+ e)− d from the smaller operand;

• alternatively, predict the number e of cancelled digits in the subtrac-
tion, and directly subtract the (n+ e)− d most-significant digits of the
smaller operand from the n+e most-significant digits of the larger one.

Note that in the first approach, we might have e = n if all most-significant
digits cancel, thus the process might need to be repeated several times.

The first step in the second approach is usually called leading zero de-
tection. Note that the number e of cancelled digits might depend on the
rounding mode. For example, 6.778−5.7781 with a 3-digit result yields 0.999
with rounding toward zero, and 1.00 with rounding to nearest. Therefore, in
a real implementation, the definition of e has to be made precise.

In practice we might consider n + g and (n + g) − d digits instead of n
and n − d, where the g “guard digits” would prove useful (i) to decide the
final rounding, and/or (ii) to avoid another loop in case e ≤ g.

Sterbenz’s Theorem

Sterbenz’s Theorem is an important result concerning floating-point subtrac-
tion (of operands of the same sign). It states that the rounding error is zero
in some common cases. More precisely:

Theorem 3.2.2 (Sterbenz) If x and y are two floating-point numbers of
same precision n, such that y lies in the interval [x/2, 2x] ∪ [2x, x/2], then
y − x is exactly representable in precision n, if there is no underflow.

Proof. The case x = y = 0 is trivial, so assume that x 6= 0. Since y ∈
[x/2, 2x] ∪ [2x, x/2], x and y must have the same sign. We assume without
loss of generality that x and y are positive, so y ∈ [x/2, 2x].

Assume x ≤ y ≤ 2x (the same reasoning applies for x/2 ≤ y ≤ x, i.e.,
y ≤ x ≤ 2y, by interchanging x and y). Since x ≤ y, we have ulp(x) ≤ ulp(y),
thus y is an integer multiple of ulp(x). It follows that y − x is an integer
multiple of ulp(x). Since 0 ≤ y − x ≤ x, y − x is necessarily representable
with the precision of x.

Modern Computer Arithmetic, §3.3 103

It is important to note that Sterbenz’s Theorem applies for any radix β; the
constant 2 in [x/2, 2x] has nothing to do with the radix.

3.3 Multiplication

Multiplication of floating-point numbers is called a short product. This re-
flects the fact that, in some cases, the low part of the full product of the
significands has no impact — except perhaps for the rounding — on the final
result. Consider the multiplication x × y, where x = ℓβe and y = mβf .
Then ◦(xy) = ◦(ℓm)βe+f , thus it suffices to consider the case that x = ℓ
and y = m are integers, and the product is rounded at some weight βg for
g ≥ 0. Either the integer product ℓ × m is computed exactly, using one
of the algorithms from Chapter 1, and then rounded; or the upper part is
computed directly using a “short product algorithm”, with correct rounding.
The different cases that can occur are depicted in Figure 3.1.

An interesting question is: how many consecutive identical bits can occur
after the round bit? Without loss of generality, we can rephrase this question
as follows. Given two odd integers of at most n bits, what is the longest run
of identical bits in their product? (In the case of an even significand, one
might write it m = ℓ2e with ℓ odd.) There is no a priori bound except the
trivial one of 2n− 2 for the number of zeros, and 2n − 1 for the number of
ones. For example, with a precision 5 bits, 27× 19 = (1 000 000 001)2. More
generally, such a case corresponds to a factorisation of 22n−1 + 1 into two
integers of n bits, for example 258 513 × 132 913 = 235 + 1. 2n consecutive
ones are not possible since 22n − 1 can not factor into two integers of at
most n bits. Therefore the maximal runs have 2n − 1 ones, for example
217× 151 = (111 111 111 111 111)2 for n = 8. A larger example is 849 583×
647 089 = 239 − 1.

The exact product of two floating-point numbers mβe and m′βe′ is
(mm′)βe+e′. Therefore, if no underflow or overflow occurs, the problem
reduces to the multiplication of the significands m and m′. See Algorithm
FPmultiply.

The product at step 1 of FPmultiply is a short product, i.e., a product
whose most significant part only is wanted, as discussed at the start of this
section. In the quadratic range, it can be computed in about half the time of
a full product. In the Karatsuba and Toom-Cook ranges, Mulders’ algorithm
can gain 10% to 20%; however, due to carries, implementing this algorithm

104 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

x

y

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

x

y

@
@

@
@

@
@

@
@

@
@

@

(a) (b)

x

y

@
@

@
@

@
@@

x

y

@
@

@@

(c) (d)

Figure 3.1: Different multiplication scenarios, according to the input and
output precisions. The rectangle corresponds to the full product of the inputs
x and y (most significant digits bottom left), the triangle to the wanted short
product. Case (a): no rounding is necessary, the product being exact; case
(b): the full product needs to be rounded, but the inputs should not be;
case (c): the input x with the larger precision might be truncated before
performing a short product; case (d): both inputs might be truncated.

for floating-point computations is tricky. In the FFT range, no better al-
gorithm is known than computing the full product mm′ and then rounding
it.

Hence our advice is to perform a full product of m and m′, possibly after
truncating them to n+ g digits if they have more than n + g digits. Here g
(the number of guard digits) should be positive (see Exercise 3.4).

It seems wasteful to multiply n-bit operands, producing a 2n-bit product,
only to discard the low-order n bits. Algorithm ShortProduct computes
an approximation to the short product without computing the 2n-bit full
product. It uses a threshold n0 ≥ 1, which should be optimized for the given
code base.

Modern Computer Arithmetic, §3.3 105

Algorithm 3.3 FPmultiply

Input: x = m · βe, x′ = m′ · βe′, a precision n, a rounding mode ◦
Output: ◦(xx′) rounded to precision n
1: m′′ ← ◦(mm′) rounded to precision n
2: return m′′ · βe+e′.

Error analysis of the short product. Consider two n-word normalised
significands A and B that we multiply using a short product algorithm, where
the notation FullProduct(A,B) means the full integer product A ·B.

Algorithm 3.4 ShortProduct

Input: integers A,B, and n, with 0 ≤ A,B < βn

Output: an approximation to AB div βn

Require: a threshold n0

if n ≤ n0 then return FullProduct(A,B) div βn

choose k ≥ n/2, ℓ← n− k
C1 ← FullProduct(A div βℓ, B div βℓ) div βk−ℓ

C2 ← ShortProduct(A mod βℓ, B div βk, ℓ)
C3 ← ShortProduct(A div βk, B mod βℓ, ℓ)
return C1 + C2 + C3.

Theorem 3.3.1 The value C ′ returned by Algorithm ShortProduct differs
from the exact short product C = AB div βn by at most 3(n− 1):

C ′ ≤ C ≤ C ′ + 3(n− 1).

Proof. First, since A,B are nonnegative, and all roundings are truncations,
the inequality C ′ ≤ C follows.

Let A =
∑

i aiβ
i and B =

∑
j bjβ

j, where 0 ≤ ai, bj < β. The possi-
ble errors come from: (i) the neglected aibj terms, i.e., parts C ′

2, C
′
3, C4 of

Figure 3.2; (ii) the truncation while computing C1; (iii) the error in the
recursive calls for C2 and C3.

We first prove that the algorithm accumulates all products aibj with
i + j ≥ n − 1. This corresponds to all terms on and below the diagonal in
Figure 3.2. The most significant neglected terms are the bottom-left terms
from C ′

2 and C ′
3, respectively aℓ−1bk−1 and ak−1bℓ−1. Their contribution is at

106 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

@

@
@

@
@

@

@

A

B

C1

C2

C3

C ′
2

C ′
3

C4

Figure 3.2: Graphical view of Algorithm ShortProduct: the computed
parts are C1, C2, C3, and the neglected parts are C ′

2, C
′
3, C4 (most significant

part bottom left).

most 2(β − 1)2βn−2. The neglected terms from the next diagonal contribute
at most 4(β − 1)2βn−3, and so on. The total contribution of neglected terms
is thus bounded by:

(β − 1)2βn[2β−2 + 4β−3 + 6β−4 + · · ·] < 2βn

(the inequality is strict since the sum is finite).
The truncation error in C1 is at most βn, thus the maximal difference

ε(n) between C and C ′ satisfies:

ε(n) < 3 + 2ε(⌊n/2⌋),

which gives ε(n) < 3(n− 1), since ε(1) = 0.

Remark: if one of the operands was truncated before applying Algorithm
ShortProduct, simply add one unit to the upper bound (the truncated part
is less than 1, thus its product by the other operand is bounded by βn).

The complexity S(n) of Algorithm ShortProduct satifies the recurrence
S(n) = M(k)+2S(n−k). The optimal choice of k depends on the underlying
multiplication algorithm. Assuming M(n) ≈ nα for α > 1 and k = γn, we
get

S(n) =
γα

1− 2(1− γ)α
M(n),

where the optimal value is γ = 1/2 in the quadratic range, γ ≈ 0.694 in
the Karatsuba range, and γ ≈ 0.775 in the Toom-Cook 3-way range, giving

Modern Computer Arithmetic, §3.3 107

respectively S(n) ∼ 0.5M(n), S(n) ∼ 0.808M(n), and S(n) ∼ 0.888M(n).
The ratio S(n)/M(n) → 1 as r → ∞ for Toom-Cook r-way. In the FFT
range, Algorithm ShortProduct is not any faster than a full product.

3.3.1 Integer Multiplication via Complex FFT

To multiply n-bit integers, it may be advantageous to use the Fast Fourier
Tranform (FFT for short, see §1.3.4, §2.3). Note that three FFTs give the
cyclic convolution z = x ∗ y defined by

zk =
∑

0≤j<N

xjyk−j mod N for 0 ≤ k < N.

In order to use the FFT for integer multiplication, we have to pad the input
vectors with zeros, thus increasing the length of the transform from N to
2N .

FFT algorithms fall into two classes: those using number theoretical prop-
erties (typically working over a finite ring, as in §2.3.3), and those based on
complex floating-point computations. The latter, while not having the best
asymptotic complexity, exhibit good practical behaviour, because they take
advantage of the efficiency of floating-point hardware. The drawback of the
complex floating-point FFT (complex FFT for short) is that, being based on
floating-point computations, it requires a rigorous error analysis. However,
in some contexts where occasional errors are not disastrous, one may accept
a small probability of error if this speeds up the computation. For example,
in the context of integer factorisation, a small probability of error is accept-
able because the result (a purported factorisation) can easily be checked and
discarded if incorrect.

The following theorem provides a tight error analysis:

Theorem 3.3.2 The complex FFT allows computation of the cyclic convo-
lution z = x ∗ y of two vectors of length N = 2n of complex values such
that

||z′ − z||∞ ≤ ||x|| · ||y|| · ((1 + ε)3n(1 + ε
√
5)3n+1(1 + µ)3n − 1), (3.2)

where || · || and || · ||∞ denote the Euclidean and infinity norms respectively, ε
is such that |(a±b)′− (a±b)| ≤ ε|a±b|, |(ab)′− (ab)| ≤ ε|ab| for all machine
floats a, b. Here µ ≥ |(wk)′ − (wk)|, 0 ≤ k < N , w = e2πi/N , and (·)′ refers
to the computed (stored) value of (·) for each expression.

108 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

n b m

1 25 25
2 24 48
3 23 92
4 22 176
5 22 352
6 21 672
7 20 1280
8 20 2560
9 19 4864
10 19 9728

n b m

11 18 18432
12 17 34816
13 17 69632
14 16 131072
15 16 262144
16 15 491520
17 15 983040
18 14 1835008
19 14 3670016
20 13 6815744

Table 3.3: Maximal number b of bits per IEEE 754 double-precision floating-
point number binary64 (53-bit significand), and maximalm for a plainm×m
bit integer product, for a given FFT size 2n, with signed components.

For the IEEE 754 double-precision format, with rounding to nearest, we have
ε = 2−53, and if the wk are correctly rounded, we can take µ = ε/

√
2. For a

fixed FFT size N = 2n, the inequality (3.2) enables us to compute a bound
B on the components of x and y that guarantees ||z′ − z||∞ < 1/2. If we
know that the exact result z ∈ ZN , this enables us to uniquely round the
components of z′ to z. Table 3.3 gives b = lgB, the number of bits that
can be used in a 64-bit floating-point word, if we wish to perform m-bit
multiplication exactly (here m = 2n−1b). It is assumed that the FFT is
performed with signed components in Z ∩ [−2b−1,+2b−1), see for example
[80, p. 161].

Note that Theorem 3.3.2 is a worst-case result; with rounding to nearest
we expect the error to be smaller due to cancellation – see Exercise 3.9.

Since 64-bit floating-point numbers have bounded precision, we can not
compute arbitrarily large convolutions by this method — the limit is about
n = 43. However, this corresponds to vectors of size N = 2n = 243 > 1012,
which is more than enough for practical purposes. (See also Exercise 3.11.)

Modern Computer Arithmetic, §3.3 109

3.3.2 The Middle Product

Given two integers of 2n and n bits respectively, their “middle product”
consists of the middle n bits of their 3n-bit product (see Fig. 3.3). The

y

x

@
@

@
@

@

@
@

@
@

@

Figure 3.3: The middle product of x of n bits and y of 2n bits corresponds
to the middle region (most significant bits bottom left).

middle product might be computed using two short products, one (low) short
product between x and the high part of y, and one (high) short product
between x and the low part of y. However there are algorithms to compute
a 2n× n middle product with the same ∼M(n) complexity as an n× n full
product (see §3.8).

Several applications benefit from an efficient middle product. One of
these applications is Newton’s method (§4.2). Consider, for example, the
reciprocal iteration (§4.2.2): xj+1 = xj + xj(1 − xjy). If xj has n bits, one
has to consider 2n bits from y in order to get 2n accurate bits in xj+1. The
product xjy has 3n bits, but if xj is accurate to n bits, the n most significant
bits of xjy cancel with 1, and the n least significant bits can be ignored as
they only contribute noise. Thus, the middle product of xj and y is exactly
what is needed.

Payne and Hanek Argument Reduction

Another application of the middle product is Payne and Hanek argument
reduction. Assume x = m · 2e is a floating-point number with a significand
0.5 ≤ m < 1 of n bits and a large exponent e (say n = 53 and e = 1024
to fix the ideas). We want to compute sin x with a precision of n bits. The
classical argument reduction works as follows: first compute k = ⌊x/π⌉, then
compute the reduced argument

x′ = x− kπ. (3.3)

About e bits will be cancelled in the subtraction x − (kπ), thus we need
to compute kπ with a precision of at least e + n bits to get an accuracy of

110 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

at least n bits for x′. Of course, this assumes that x is known exactly –
otherwise there is no point in trying to compute sin x. Assuming 1/π has
been precomputed to precision e, the computation of k costs M(e, n), and
the multiplication k× π costs M(e, e+ n), thus the total cost is about M(e)
when e≫ n.

y

x

1/π

@
@

@
@

@
@

@
@

@
@

@
@

@
�
@
�
@
�

Figure 3.4: A graphical view of Payne and Hanek algorithm.

The key idea of the Payne and Hanek algorithm is to rewrite Eqn. (3.3)
as

x′ = π
(x
π
− k
)
. (3.4)

If the significand of x has n < e bits, only about 2n bits from the expansion
of 1/π will effectively contribute to the n most significant bits of x′, namely
the bits of weight 2−e−n to 2−e+n. Let y be the corresponding 2n-bit part
of 1/π. Payne and Hanek’s algorithm works as follows: first multiply the
n-bit significand of x by y, keep the n middle bits, and multiply by an n-bit
approximation of π. The total cost is ∼(M(2n, n)+M(n)), or even ∼2M(n)
if the middle product is performed in time M(n), thus independent of e.

3.4 Reciprocal and Division

As for integer operations (§1.4), one should try as far as possible to trade
floating-point divisions for multiplications, since the cost of a floating-point
multiplication is theoretically smaller than the cost of a division by a constant
factor (usually from 2 to 5, depending on the algorithm used). In practice,
the ratio might not even be constant unless care is taken in implementing
division. Some implementations provide division with cost Θ(M(n) log n) or
Θ(n2).

When several divisions have to be performed with the same divisor, a well-
known trick is to first compute the reciprocal of the divisor (§3.4.1); then each
division reduces to a multiplications by the reciprocal. A small drawback is

Modern Computer Arithmetic, §3.4 111

that each division incurs two rounding errors (one for the reciprocal and
one for multiplication by the reciprocal) instead of one, so we can no longer
guarantee a correctly rounded result. For example, in base ten with six digits,
3.0/3.0 might evaluate to 0.999 999 = 3.0× 0.333 333.

The cases of a single division, or several divisions with a varying divisor,
are considered in §3.4.2.

3.4.1 Reciprocal

Here we describe algorithms that compute an approximate reciprocal of a
positive floating-point number a, using integer-only operations (see Chap-
ter 1). The integer operations simulate floating-point computations, but
all roundings are made explicit. The number a is represented by an inte-
ger A of n words in radix β: a = β−nA, and we assume βn/2 ≤ A, thus
requiring 1/2 ≤ a < 1. (This does not cover all cases for β ≥ 3, but if
βn−1 ≤ A < βn/2, multiplying A by some appropriate integer k < β will
reduce to the case βn/2 ≤ A, then it suffices to multiply the reciprocal of ka
by k.)

We first perform an error analysis of Newton’s method (§4.2) assuming
all computations are done with infinite precision, thus neglecting roundoff
errors.

Lemma 3.4.1 Let 1/2 ≤ a < 1, ρ = 1/a, x > 0, and x′ = x + x(1 − ax).
Then:

0 ≤ ρ− x′ ≤ x2

θ3
(ρ− x)2,

for some θ ∈ [min(x, ρ),max(x, ρ)].

Proof. Newton’s iteration is based on approximating the function by its
tangent. Let f(t) = a−1/t, with ρ the root of f . The second-order expansion
of f at t = ρ with explicit remainder is:

f(ρ) = f(x) + (ρ− x)f ′(x) +
(ρ− x)2

2
f ′′(θ),

for some θ ∈ [min(x, ρ),max(x, ρ)]. Since f(ρ) = 0, this simplifies to

ρ = x− f(x)

f ′(x)
− (ρ− x)2

2

f ′′(θ)

f ′(x)
. (3.5)

112 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Substituting f(t) = a− 1/t, f ′(t) = 1/t2 and f ′′(t) = −2/t3, it follows that:

ρ = x+ x(1− ax) +
x2

θ3
(ρ− x)2,

which proves the claim.

Algorithm ApproximateReciprocal computes an approximate recipro-
cal. The input A is assumed to be normalised, i.e., βn/2 ≤ A < βn. The
output integer X is an approximation to β2n/A.

Algorithm 3.5 ApproximateReciprocal

Input: A =
∑n−1

i=0 aiβ
i, with 0 ≤ ai < β and β/2 ≤ an−1

Output: X = βn +
∑n−1

i=0 xiβ
i with 0 ≤ xi < β

1: if n ≤ 2 then return ⌈β2n/A⌉ − 1
2: ℓ← ⌊(n− 1)/2⌋, h← n− ℓ
3: Ah ←

∑h−1
i=0 aℓ+iβ

i

4: Xh ← ApproximateReciprocal(Ah)
5: T ← AXh

6: while T ≥ βn+h do
7: (Xh, T)← (Xh − 1, T −A)

8: T ← βn+h − T
9: Tm ← ⌊Tβ−ℓ⌋
10: U ← TmXh

11: return Xhβ
ℓ + ⌊Uβℓ−2h⌋.

Lemma 3.4.2 If β is a power of two satisfying β ≥ 8, and βn/2 ≤ A < βn,
then the output X of Algorithm ApproximateReciprocal satisfies:

AX < β2n < A(X + 2).

Proof. For n ≤ 2 the algorithm returns X = ⌊β2n/A⌋, unless A = βn/2
when it returns X = 2βn− 1. In both cases we have AX < β2n ≤ A(X +1),
thus the lemma holds for n ≤ 2.

Now consider n ≥ 3. We have ℓ = ⌊(n−1)/2⌋ and h = n−ℓ, thus n = h+ℓ
and h > ℓ. The algorithm first computes an approximate reciprocal of the
upper h words of A, and then updates it to n words using Newton’s iteration.

Modern Computer Arithmetic, §3.4 113

After the recursive call at line 4, we have by induction

AhXh < β2h < Ah(Xh + 2). (3.6)

After the product T ← AXh and the while-loop at steps 6–7, we still have
T = AXh, where T and Xh may have new values, and in addition T < βn+h.
We also have βn+h < T + 2A; we prove this by distinguishing two cases.
Either we entered the while-loop, then since the value of T decreased by A
at each loop, the previous value T +A was necessarily ≥ βn+h. If we did not
enter the while-loop, the value of T is still AXh. Multiplying Eqn. (3.6) by
βℓ gives: βn+h < Ahβ

ℓ(Xh + 2) ≤ A(Xh + 2) = T + 2A. Thus we have:

T < βn+h < T + 2A.

It follows that T > βn+h− 2A > βn+h− 2βn. As a consequence, the value of
βn+h−T computed at step 8 can not exceed 2βn−1. The last lines compute
the product TmXh, where Tm is the upper part of T , and put its ℓ most
significant words in the low part Xℓ of the result X .

Now let us perform the error analysis. Compared to Lemma 3.4.1, x
stands for Xhβ

−h, a stands for Aβ−n, and x′ stands for Xβ−n. The while-
loop ensures that we start from an approximation x < 1/a, i.e., AXh < βn+h.
Then Lemma 3.4.1 guarantees that x ≤ x′ ≤ 1/a if x′ is computed with
infinite precision. Here we have x ≤ x′, since X = Xhβ

h+Xℓ, where Xℓ ≥ 0.
The only differences compared to infinite precision are:

• the low ℓ words from 1 − ax — here T at line 8 — are neglected, and
only its upper part (1− ax)h — here Tm — is considered;

• the low 2h− ℓ words from x(1 − ax)h are neglected.

Those two approximations make the computed value of x′ ≤ the value which
would be computed with infinite precision. Thus, for the computed value x′,
we have:

x ≤ x′ ≤ 1/a.

From Lemma 3.4.1, the mathematical error is bounded by x2θ−3(ρ−x)2 <
4β−2h, since x2 ≤ θ3 and |ρ− x| < 2β−h. The truncation from 1− ax, which
is multiplied by x < 2, produces an error < 2β−2h. Finally, the truncation of
x(1− ax)h produces an error < β−n. The final result is thus:

x′ ≤ ρ < x′ + 6β−2h + β−n.

114 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Assuming 6β−2h ≤ β−n, which holds as soon as β ≥ 6 since 2h > n, this
simplifies to:

x′ ≤ ρ < x′ + 2β−n,

which gives with x′ = Xβ−n and ρ = βn/A:

X ≤ β2n

A
< X + 2.

Since β is assumed to be a power of two, equality can hold only when A is
itself a power of two, i.e., A = βn/2. In this case there is only one value
of Xh that is possible for the recursive call, namely Xh = 2βh − 1. In this
case T = βn+h − βn/2 before the while-loop, which is not entered. Then
βn+h − T = βn/2, which multiplied by Xh gives (again) βn+h − βn/2, whose
h most significant words are β − 1. Thus Xℓ = βℓ − 1, and X = 2βn − 1.

Remark. Lemma 3.4.2 might be extended to the case βn−1 ≤ A < βn or
to a radix β which is not a power of two. However, we prefer to state a
restricted result with simple bounds.

Complexity Analysis. Let I(n) be the cost to invert an n-word number
using Algorithm ApproximateReciprocal. If we neglect the linear costs,
we have I(n) ≈ I(n/2) +M(n, n/2) +M(n/2), where M(n, n/2) is the cost
of an n × (n/2) product — the product AXh at step 5 — and M(n/2) the
cost of an (n/2) × (n/2) product — the product TmXh at step 10. If the
n × (n/2) product is performed via two (n/2) × (n/2) products, we have
I(n) ≈ I(n/2)+3M(n/2), which yields I(n) ∼M(n) in the quadratic range,
∼ 1.5M(n) in the Karatsuba range, ∼ 1.704M(n) in the Toom-Cook 3-way
range, and ∼ 3M(n) in the FFT range. In the FFT range, an n × (n/2)
product might be directly computed by three FFTs of length 3n/2 words,
amounting to ∼M(3n/4); in this case the complexity decreases to ∼2.5M(n)
(see the comments at the end of §2.3.3, page 62).

The wrap-around trick. We now describe a slight modification of Algo-
rithm ApproximateReciprocal which yields a complexity 2M(n). In the
product AXh at step 5, Eqn. (3.6) tells us that the result approaches βn+h,
or more precisely:

βn+h − 2βn < AXh < βn+h + 2βn. (3.7)

Assume we use an FFT-based algorithm such as the Schönhage-Strassen
algorithm that computes products modulo βm + 1, for some integer m ∈

Modern Computer Arithmetic, §3.4 115

(n, n+h). Let AXh = Uβm+V with 0 ≤ V < βm. It follows from Eqn. (3.7)
that U = βn+h−m or U = βn+h−m−1. Let T = AXh mod (βm+1) be the value
computed by the algorithm. We have T = V − U or T = V − U + (βm + 1).
It follows that AXh = T +U(βm+1) or AXh = T +(U −1)(βm+1). Taking
into account the two possible values of U , we have

AXh = T + (βn+h−m − ε)(βm + 1),

where ε ∈ {0, 1, 2}. Since β ≥ 6, βm > 4βn, thus only one value of ε yields a
value of AXh in the interval (βn+h − 2βn, βn+h + 2βn).

Thus, we can replace step 5 in Algorithm ApproximateReciprocal by
the following code:

Compute T = AXh mod (βm+1) using FFTs with length m > n
T ← T + βn+h + βn+h−m ⊲ the case ε = 0
while T ≥ βn+h + 2βn do

T ← T − (βm + 1)

Assuming that one can take m close to n, the cost of the product AXh is
only about that of three FFTs of length n, that is ∼M(n/2).

3.4.2 Division

In this section we consider the case where the divisor changes between suc-
cessive operations, so no precomputation involving the divisor can be per-
formed. We first show that the number of consecutive zeros in the result is
bounded by the divisor length, then we consider the division algorithm and
its complexity. Lemma 3.4.3 analyses the case where the division operands
are truncated, because they have a larger precision than desired in the re-
sult. Finally we discuss “short division” and the error analysis of Barrett’s
algorithm.

A floating-point division reduces to an integer division as follows. Assume
dividend a = ℓ · βe and divisor d = m · βf , where ℓ,m are integers. Then
a/d = (ℓ/m)βe−f . If k bits of the quotient are needed, we first determine
a scaling factor g such that βk−1 ≤ |ℓβg/m| < βk, and we divide ℓβg —
truncated if needed — by m. The following theorem gives a bound on the
number of consecutive zeros after the integer part of the quotient of ⌊ℓβg⌋
by m.

116 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Theorem 3.4.1 Assume we divide an m-digit positive integer by an n-digit
positive integer in radix β, with m ≥ n. Then the quotient is either exact,
or its radix β expansion admits at most n− 1 consecutive zeros or ones after
the digit of weight β0.

Proof. We first consider consecutive zeros. If the expansion of the quotient
q admits n or more consecutive zeros after the binary point, we can write
q = q1 + β−nq0, where q1 is an integer and 0 ≤ q0 < 1. If q0 = 0, then
the quotient is exact. Otherwise, if a is the dividend and d is the divisor,
one should have a = q1d + β−nq0d. However, a and q1d are integers, and
0 < β−nq0d < 1, so β−nq0d can not be an integer, so we have a contradiction.

For consecutive ones, the proof is similar: write q = q1 − β−nq0, with
0 ≤ q0 ≤ 1. Since d < βn, we still have 0 ≤ β−nq0d < 1.

Algorithm DivideNewton performs the division of two n-digit floating-
point numbers. The key idea is to approximate the inverse of the divi-
sor to half precision only, at the expense of additional steps. At step 4,
MiddleProduct(q0, d) denotes the middle product of q0 and d, i.e., the n/2
middle digits of that product. At step 2, r is an approximation to 1/d1, and
thus to 1/d, with precision n/2 digits. Therefore at step 3, q0 approximates
c/d to about n/2 digits, and the upper n/2 digits of q0d at step 4 agree with
those of c. The value e computed at step 4 thus equals q0d − c to precision
n/2. It follows that re ≈ e/d agrees with q0 − c/d to precision n/2; hence
the correction term (which is really a Newton correction) added in the last
step.

Algorithm 3.6 DivideNewton

Input: n-digit floating-point numbers c and d, with n even, d normalised
Output: an approximation of c/d
1: write d = d1β

n/2 + d0 with 0 ≤ d1, d0 < βn/2

2: r ← ApproximateReciprocal(d1, n/2)
3: q0 ← cr truncated to n/2 digits
4: e←MiddleProduct(q0, d)
5: q ← q0 − re.

In the FFT range, the cost of Algorithm DivideNewton is ∼2.5M(n):
step 2 costs ∼2M(n/2) ∼ M(n) with the wrap-around trick, and steps 3–5
each cost ∼M(n/2) — using a fast middle product algorithm for step 4. By

Modern Computer Arithmetic, §3.4 117

way of comparison, if we computed a full precision inverse as in Barrett’s
algorithm (see below), the cost would be ∼3.5M(n). (See §3.8 for improved
asymptotic bounds on division.)

In the Karatsuba range, Algorithm DivideNewton costs ∼ 1.5M(n),
and is useful provided the middle product of step 4 is performed with cost
∼M(n/2). In the quadratic range, Algorithm DivideNewton costs
∼2M(n), and a classical division should be preferred.

When the requested precision for the output is smaller than that of the
inputs of a division, one has to truncate the inputs, in order to avoid an
unnecessarily expensive computation. Assume for example that we want to
divide two numbers of 10, 000 bits, with a 10-bit quotient. To apply the
following lemma, just replace µ by an appropriate value such that A1 and
B1 have about 2n and n digits respectively, where n is the desired number
of digits in the quotient; for example we might choose µ = βk to truncate to
k words.

Lemma 3.4.3 Let A,B, µ ∈ N∗, 2 ≤ µ ≤ B. Let Q = ⌊A/B⌋, A1 = ⌊A/µ⌋,
B1 = ⌊B/µ⌋, Q1 = ⌊A1/B1⌋. If A/B ≤ 2B1, then

Q ≤ Q1 ≤ Q + 2.

The condition A/B ≤ 2B1 is quite natural: it says that the truncated divisor
B1 should have essentially at least as many digits as the desired quotient.

Proof. Let A1 = Q1B1 +R1. We have A = A1µ+ A0, B = B1µ+B0, thus

A

B
=

A1µ+ A0

B1µ+B0

≤ A1µ+ A0

B1µ
= Q1 +

R1µ+ A0

B1µ
.

Since R1 < B1 and A0 < µ, R1µ + A0 < B1µ, thus A/B < Q1 + 1. Taking
the floor of each side proves, since Q1 is an integer, that Q ≤ Q1.

Now consider the second inequality. For given truncated parts A1 and
B1, and thus given Q1, the worst case is when A is minimal, say A = A1µ,
and B is maximal, say B = B1µ+ (µ− 1). In this case we have:

∣∣∣∣
A1

B1
− A

B

∣∣∣∣ =
∣∣∣∣
A1

B1
− A1µ

B1µ+ (µ− 1)

∣∣∣∣ =
∣∣∣∣

A1(µ− 1)

B1(B1µ+ µ− 1)

∣∣∣∣ .

The numerator equals A − A1 ≤ A, and the denominator equals B1B, thus
the difference A1/B1 − A/B is bounded by A/(B1B) ≤ 2, and so is the
difference between Q and Q1.

118 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm ShortDivision is useful in the Karatsuba and Toom-Cook
ranges. The key idea is that, when dividing a 2n-digit number by an n-
digit number, some work that is necessary for a full 2n-digit division can be
avoided (see Figure 3.5).

Algorithm 3.7 ShortDivision

Input: 0 ≤ A < β2n, βn/2 ≤ B < βn

Output: an approximation of A/B
Require: a threshold n0

1: if n ≤ n0 then return ⌊A/B⌋
2: choose k ≥ n/2, ℓ← n− k
3: (A1, A0)← (A div β2ℓ, A mod β2ℓ)
4: (B1, B0)← (B div βℓ, B mod βℓ)
5: (Q1, R1)← DivRem(A1, B1)
6: A′ ← R1β

2ℓ + A0 −Q1B0β
ℓ

7: Q0 ← ShortDivision(A′ div βk, B div βk)
8: return Q1β

ℓ +Q0.

Theorem 3.4.2 The approximate quotient Q′ returned by ShortDivision
differs at most by 2 lgn from the exact quotient Q = ⌊A/B⌋, more precisely:

Q ≤ Q′ ≤ Q + 2 lgn.

Proof. If n ≤ n0, Q = Q′ so the statement holds. Assume n > n0. We
have A = A1β

2ℓ + A0 and B = B1β
ℓ + B0, thus since A1 = Q1B1 + R1,

A = (Q1B1+R1)β
2ℓ+A0 = Q1Bβℓ+A′, with A′ < βn+ℓ. Let A′ = A′

1β
k+A′

0,
and B = B′

1β
k+B′

0, with 0 ≤ A′
0, B

′
0 < βk, and A′

1 < β2ℓ. From Lemma 3.4.3,
the exact quotient of A′ div βk by B div βk is greater or equal to that of A′

by B, thus by induction Q0 ≥ A′/B. Since A/B = Q1β
ℓ +A′/B, this proves

that Q′ ≥ Q.
Now by induction Q0 ≤ A′

1/B
′
1 + 2 lg ℓ, and A′

1/B
′
1 ≤ A′/B + 2 (from

Lemma 3.4.3 again, whose hypothesis A′/B ≤ 2B′
1 is satisfied, since A′ <

B1β
2ℓ, thus A′/B ≤ βℓ ≤ 2B′

1), so Q0 ≤ A′/B+2 lgn, and Q′ ≤ A/B+2 lgn.

As shown at the right of Figure 3.5, we can use a short product to compute
Q1B0 at step 6. Indeed, we need only the upper ℓ words of A′, thus only

Modern Computer Arithmetic, §3.4 119

M(n/2)

M(n/4)

M(n/4)

M(n/4)

M(n
8
)

M(n
8
)

M(n
8
)

M(n
8
)

M(n
8
)

M(n
8
)

M(n
8
)

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

M∗(n/2)M(n4)

M(n4)

M∗(n4)

M(n
8
)

M(n
8
)

M(n
8
)

M(n
8
)

M(n
8
)

M(n
8
)

M∗(n
8
)

Figure 3.5: Divide and conquer short division: a graphical view. Left: with
plain multiplication; right: with short multiplication. See also Figure 1.3.

the upper ℓ words of Q1B0. The complexity of Algorithm ShortDivision
satisfies D∗(n) = D(k) + M∗(n − k) + D∗(n − k) with k ≥ n/2, where
D(n) denotes the cost of a division with remainder, and M∗(n) the cost of
a short product. In the Karatsuba range we have D(n) ∼ 2M(n), M∗(n) ∼
0.808M(n), and the best possible value of k is k ≈ 0.542n, with corresponding
cost D∗(n) ∼ 1.397M(n). In the Toom-Cook 3-way range, k ≈ 0.548n is
optimal, and gives D∗(n) ∼ 1.988M(n).

Barrett’s floating-point division algorithm

Here we consider floating-point division using Barrett’s algorithm and pro-
vide a rigorous error bound (see §2.4.1 for an exact integer version). The
algorithm is useful when the same divisor is used several times; otherwise
Algorithm DivideNewton is faster (see Exercise 3.13). Assume we want to
divide a by b of n bits, each with a quotient of n bits. Barrett’s algorithm is
as follows:

1. Compute the reciprocal r of b to n bits [rounding to nearest]

120 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

2. q ← ◦n(a× r) [rounding to nearest]

The cost of the algorithm in the FFT range is ∼3M(n): ∼2M(n) to compute
the reciprocal with the wrap-around trick, and M(n) for the product a× r.

Lemma 3.4.4 At step 2 of Barrett’s algorithm, we have |a− bq| ≤ 3|b|/2.
Proof. By scaling a and b, we can assume that b and q are integers, that
2n−1 ≤ b, q < 2n, thus a < 22n. We have r = 1/b+ ε with |ε| ≤ ulp(2−n/2) =
2−2n. Also q = ar + ε′ with |ε′| ≤ ulp(q)/2 = 1/2 since q has n bits. Thus
q = a(1/b+ ε) + ε′ = a/b+ aε+ ε′, and |bq − a| = |b||aε+ ε′| ≤ 3|b|/2.
As a consequence, q differs by at most one unit in last place from the n-bit
quotient of a and b, rounded to nearest.

Lemma 3.4.4 can be applied as follows: to perform several divisions with
a precision of n bits with the same divisor, precompute a reciprocal with
n + g bits, and use the above algorithm with a working precision of n + g
bits. If the last g bits of q are neither 000 . . . 00x nor 111 . . . 11x (where x
stands for 0 or 1), then rounding q down to n bits will yield ◦n(a/b) for a
directed rounding mode.

Which Algorithm to Use?

In this section, we described three algorithms to compute x/y: Divide-
Newton uses Newton’s method for 1/y and incorporates the dividend x
at the last iteration, ShortDivision is a recursive algorithm using division
with remainder and short products, and Barrett’s algorithm assumes we have
precomputed an approximation to 1/y. When the same divisor y is used
several times, clearly Barrett’s algorithm is better, since each division costs
only a short product. Otherwise ShortDivision is theoretically faster than
DivideNewton in the schoolbook and Karatsuba ranges, and taking k =
n/2 as parameter in ShortDivision is close to optimal. In the FFT range,
DivideNewton should be preferred.

3.5 Square Root

Algorithm FPSqrt computes a floating-point square root, using as subrou-
tine Algorithm SqrtRem (§1.5.1 to determine an integer square root (with
remainder). It assumes an integer significand m, and a directed rounding
mode (see Exercise 3.14 for rounding to nearest).

Modern Computer Arithmetic, §3.5 121

Algorithm 3.8 FPSqrt

Input: x = m · 2e, a target precision n, a directed rounding mode ◦
Output: y = ◦n(

√
x)

if e is odd then (m′, f)← (2m, e− 1) else (m′, f)← (m, e)
define m′ := m12

2k +m0, m1 integer of 2n or 2n− 1 bits, 0 ≤ m0 < 22k

(s, r)← SqrtRem(m1)
if (◦ is round towards zero or down) or (r = m0 = 0)

then return s · 2k+f/2 else return (s+ 1) · 2k+f/2.

Theorem 3.5.1 Algorithm FPSqrt returns the correctly rounded square
root of x.

Proof. Since m1 has 2n or 2n − 1 bits, s has exactly n bits, and we have
x ≥ s222k+f , thus

√
x ≥ s2k+f/2. On the other hand, SqrtRem ensures that

r ≤ 2s, thus x2−f = (s2 + r)22k +m0 < (s2 + r + 1)22k ≤ (s+ 1)222k. Since
y := s·2k+f/2 and y+ = (s+1)·2k+f/2 are two consecutive n-bit floating-point
numbers, this concludes the proof.

Note: in the case s = 2n − 1, s+ 1 = 2n is still representable in n bits.

A different method is to use an initial approximation to the reciprocal
square root x−1/2 (§3.5.1), see Exercise 3.15. Faster algorithms are mentioned
in §3.8.

3.5.1 Reciprocal Square Root

In this section we describe an algorithm to compute the reciprocal square
root a−1/2 of a floating-point number a, with a rigorous error bound.

Lemma 3.5.1 Let a, x > 0, ρ = a−1/2, and x′ = x+ (x/2)(1− ax2). Then

0 ≤ ρ− x′ ≤ 3x3

2θ4
(ρ− x)2,

for some θ ∈ [min(x, ρ),max(x, ρ)].

Proof. The proof is very similar to that of Lemma 3.4.1. Here we use
f(t) = a− 1/t2, with ρ the root of f . Eqn. (3.5) translates to:

ρ = x+
x

2
(1− ax2) +

3x3

2θ4
(ρ− x)2,

which proves the Lemma.

122 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm 3.9 ApproximateRecSquareRoot

Input: integer A with βn ≤ A < 4βn, β ≥ 38
Output: integer X , βn/2 ≤ X < βn satisfying Lemma 3.5.2
1: if n ≤ 2 then return min(βn − 1, ⌊βn/

√
Aβ−n⌋)

2: ℓ← ⌊(n− 1)/2⌋, h← n− ℓ
3: Ah ← ⌊Aβ−ℓ⌋
4: Xh ← ApproximateRecSquareRoot(Ah)
5: T ← AX2

h

6: Th ← ⌊Tβ−n⌋
7: Tℓ ← β2h − Th

8: U ← TℓXh

9: return min(βn − 1, Xhβ
ℓ + ⌊Uβℓ−2h/2⌉).

Lemma 3.5.2 Provided that β ≥ 38, if X is the value returned by Algorithm
ApproximateRecSquareRoot, a = Aβ−n, x = Xβ−n, then 1/2 ≤ x < 1
and

|x− a−1/2| ≤ 2β−n.

Proof. We have 1 ≤ a < 4. Since X is bounded by βn − 1 at lines 1 and 9,
we have x, xh < 1, with xh = Xhβ

−h. We prove the statement by induction
on n. It is true for n ≤ 2. Now assume the value Xh at step 4 satisfies:

|xh − a
−1/2
h | ≤ β−h,

where ah = Ahβ
−h. We have three sources of error, that we will bound

separately:

1. the rounding errors in steps 6 and 9;

2. the mathematical error given by Lemma 3.5.1, which would occur even
if all computations were exact;

3. the error coming from the fact we use Ah instead of A in the recursive
call at step 4.

At step 5 we have exactly:

t := Tβ−n−2h = ax2
h,

Modern Computer Arithmetic, §3.5 123

which gives |th−ax2
h| < β−2h with th := Thβ

−2h, and in turn |tℓ−(1−ax2
h)| <

β−2h with tℓ := Tℓβ
−2h. At step 8, it follows |u− xh(1− ax2

h)| < β−2h, where
u = Uβ−3h. Thus, finally |x− [xh + xh(1− ax2

h)/2]| < (β−2h + β−n)/2, after
taking into account the rounding error in the last step.

Now we apply Lemma 3.5.1 to x→ xh, x
′ → x, to bound the mathemat-

ical error, assuming no rounding error occurs:

0 ≤ a−1/2 − x ≤ 3x3
h

2θ4
(a−1/2 − xh)

2,

which gives1 |a−1/2 − x| ≤ 3.04(a−1/2 − xh)
2. Now |a−1/2 − a

−1/2
h | ≤

|a− ah|ν−3/2/2 for ν ∈ [min(ah, a),max(ah, a)], thus |a−1/2− a
−1/2
h | ≤ β−h/2.

Together with the induction hypothesis |xh − a
−1/2
h | ≤ 2β−h, it follows that

|a−1/2 − xh| ≤ 2.5β−h. Thus |a−1/2 − x| ≤ 19β−2h.
The total error is thus bounded by:

|a−1/2 − x| ≤ 3

2
β−n + 19β−2h.

Since 2h ≥ n + 1, we see that 19β−2h ≤ β−n/2 for β ≥ 38, and the lemma
follows.

Note: if AhX
2
h ≤ β3h at step 4 of Algorithm ApproximateRecSquare-

Root, we could have AX2
h > βn+2h at step 5, which might cause Tℓ to be

negative.

Let R(n) be the cost of ApproximateRecSquareRoot for an n-digit
input. We have h, ℓ ≈ n/2, thus the recursive call costs R(n/2), step 5 costs
M(n/2) to compute X2

h, and M(n) for the product AX2
h (or M(3n/4) in the

FFT range using the wrap-around trick described in §3.4.1, since we know
the upper n/2 digits of the product give 1), and again M(n/2) for step 8.
We get R(n) = R(n/2) + 2M(n) (or R(n/2) + 7M(n)/4 in the FFT range),
which yields R(n) ∼ 4M(n) (or R(n) ∼ 3.5M(n) in the FFT range).

This algorithm is not optimal in the FFT range, especially when using an
FFT algorithm with cheap point-wise products (such as the complex FFT,

1 Since θ ∈ [xh, a
−1/2] and |xh − a−1/2| ≤ 2.5β−h, we have θ ≥ xh − 2.5β−h, thus

xh/θ ≤ 1 + 2.5β−h/θ ≤ 1 + 5β−h (remember θ ∈ [xh, a
−1/2]), and it follows that θ ≥ 1/2.

For β ≥ 38, since h ≥ 2, we have 1 + 5β−h ≤ 1.0035, thus 1.5x3
h/θ

4 ≤ (1.5/θ)(1.0035)3 ≤
3.04.

124 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

see §3.3.1). Indeed, Algorithm ApproximateRecSquareRoot uses the fol-
lowing form of Newton’s iteration:

x′ = x+
x

2
(1− ax2).

It might be better to write:

x′ = x+
1

2
(x− ax3).

Here, the product x3 might be computed with a single FFT transform of
length 3n/2, replacing the point-wise products x̂2

i by x̂3
i , with a total cost

∼ 0.75M(n). Moreover, the same idea can be used for the full product ax3

of 5n/2 bits, whose upper n/2 bits match those of x. Thus, using the wrap-
around trick, a transform of length 2n is enough, with a cost of∼M(n) for the
last iteration, and a total cost of∼2M(n) for the reciprocal square root. With
this improvement, the algorithm of Exercise 3.15 costs only ∼2.25M(n).

3.6 Conversion

Since most software tools work in radix 2 or 2k, and humans usually enter or
read floating-point numbers in radix 10 or 10k, conversions are needed from
one radix to the other one. Most applications perform very few conversions,
in comparison to other arithmetic operations, thus the efficiency of the con-
versions is rarely critical.2 The main issue here is therefore more correctness
than efficiency. Correctness of floating-point conversions is not an easy task,
as can be seen from the history of bugs in Microsoft Excel.3

The algorithms described in this section use as subroutines the integer-
conversion algorithms from Chapter 1. As a consequence, their efficiency
depends on the efficiency of the integer-conversion algorithms.

3.6.1 Floating-Point Output

In this section we follow the convention of using lower-case letters for param-
eters related to the internal radix b, and upper-case for parameters related

2An important exception is the computation of billions of digits of constants like π, log 2,
where a quadratic conversion routine would be far too slow.

3In Excel 2007, the product 850×77.1 prints as 100, 000 instead of 65, 535; this is really
an output bug, since if one multiplies “100, 000” by 2, one gets 131, 070. An input bug
occurred in Excel 3.0 to 7.0, where the input 1.40737488355328 gave 0.64.

Modern Computer Arithmetic, §3.6 125

to the external radix B. Consider the problem of printing a floating-point
number, represented internally in radix b (say b = 2) in an external radix B
(say B = 10). We distinguish here two kinds of floating-point output:

• fixed-format output, where the output precision is given by the user,
and we want the output value to be correctly rounded according to the
given rounding mode. This is the usual method when values are to
be used by humans, for example to fill a table of results. The input
and output precisions may be very different: for example one may
want to print 1000 digits of 2/3, which uses only one digit internally
in radix 3. Conversely, one may want to print only a few digits of a
number accurate to 1000 bits.

• free-format output, where we want the output value, when read with
correct rounding (usually to nearest), to give exactly the initial number.
Here the minimal number of printed digits may depend on the input
number. This kind of output is useful when storing data in a file, while
guaranteeing that reading the data back will produce exactly the same
internal numbers, or for exchanging data between different programs.

In other words, if x is the number that we want to print, and X is the printed
value, the fixed-format output requires |x−X| < ulp(X), and the free-format
output requires |x−X| < ulp(x) for directed rounding. Replace < ulp(·) by
≤ ulp(·)/2 for rounding to nearest.

Algorithm 3.10 PrintFixed

Input: x = f · be−p with f, e, p integers, bp−1 ≤ |f | < bp, external radix B
and precision P , rounding mode ◦

Output: X = F · BE−P with F,E integers, BP−1 ≤ |F | < BP , such that
X = ◦(x) in radix B and precision P

1: λ← ◦(log b/logB)
2: E ← 1 + ⌊(e− 1)λ⌋
3: q ← ⌈P/λ⌉
4: y ← ◦(xBP−E) with precision q
5: if one can not round y to an integer then increase q and go to step 4
6: F ← Integer(y, ◦). ⊲ see §1.7
7: if |F | ≥ BP then E ← E + 1 and go to step 4.
8: return F,E.

126 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Some comments on Algorithm PrintFixed:

• it assumes that we have precomputed values of λB = ◦(log b/ logB) for
any possible external radix B (the internal radix b is assumed to be
fixed for a given implementation). Assuming the input exponent e is
bounded, it is possible — see Exercise 3.17 — to choose these values
precisely enough that

E = 1 +

⌊
(e− 1)

log b

logB

⌋
, (3.8)

thus the value of λ at step 1 is simply read from a table;

• the difficult part is step 4, where one has to perform the exponentiation
BP−E — remember all computations are done in the internal radix b —
and multiply the result by x. Since we expect an integer of q digits in
step 6, there is no need to use a precision of more than q digits in these
computations, but a rigorous bound on the rounding errors is required,
so as to be able to correctly round y;

• in step 5, “one can round y to an integer” means that the interval
containing all possible values of xBP−E — including the rounding errors
while approaching xBP−E , and the error while rounding to precision
q — contains no rounding boundary (if ◦ is a directed rounding, it
should contain no integer; if ◦ is rounding to nearest, it should contain
no half-integer).

Theorem 3.6.1 Algorithm PrintFixed is correct.

Proof. First assume that the algorithm finishes. Eqn. (3.8) implies BE−1 ≤
be−1, thus |x|BP−E ≥ BP−1, which implies that |F | ≥ BP−1 at step 6. Thus
BP−1 ≤ |F | < BP at the end of the algorithm. Now, printing x gives F ·Ba

iff printing xBk gives F · Ba+k for any integer k. Thus it suffices to check
that printing xBP−E gives F , which is clear by construction.

The algorithm terminates because at step 4, xBP−E, if not an integer,
can not be arbitrarily close to an integer. If P −E ≥ 0, let k be the number
of digits of BP−E in radix b, then xBP−E can be represented exactly with
p + k digits. If P − E < 0, let g = BE−P , of k digits in radix b. Assume
f/g = n+ε with n integer; then f−gn = gε. If ε is not zero, gε is a non-zero
integer, thus |ε| ≥ 1/g ≥ 2−k.

Modern Computer Arithmetic, §3.7 127

The case |F | ≥ BP at step 7 can occur for two reasons: either |x|BP−E ≥
BP , thus its rounding also satisfies this inequality; or |x|BP−E < BP , but
its rounding equals BP (this can only occur for rounding away from zero or
to nearest). In the former case we have |x|BP−E ≥ BP−1 at the next pass
in step 4, while in the latter case the rounded value F equals BP−1 and the
algorithm terminates.

Now consider free-format output. For a directed rounding mode we want
|x − X| < ulp(x) knowing |x − X| < ulp(X). Similarly for rounding to
nearest, if we replace ulp by ulp /2.

It is easy to see that a sufficient condition is that ulp(X) ≤ ulp(x), or
equivalently BE−P ≤ be−p in Algorithm PrintFixed (with P not fixed at
input, which explain the “free-format” name). To summarise, we have

be−1 ≤ |x| < be, BE−1 ≤ |X| < BE .

Since |x| < be, and X is the rounding of x, it suffices to have BE−1 ≤ be. It
follows that BE−P ≤ beB1−P , and the above sufficient condition becomes:

P ≥ 1 + p
log b

logB
.

For example, with b = 2 and B = 10, p = 53 gives P ≥ 17, and p = 24 gives
P ≥ 9. As a consequence, if a double-precision IEEE 754 binary floating-
point number is printed with at least 17 significant decimal digits, it can be
read back without any discrepancy, assuming input and output are performed
with correct rounding to nearest (or directed rounding, with appropriately
chosen directions).

3.6.2 Floating-Point Input

The problem of floating-point input is the following. Given a floating-point
number X with a significand of P digits in some radix B (say B = 10), a
precision p and a given rounding mode, we want to correctly round X to a
floating-point number x with p digits in the internal radix b (say b = 2).

At first glance, this problem looks very similar to the floating-point output
problem, and one might think it suffices to apply Algorithm PrintFixed,
simply exchanging (b, p, e, f) and (B,P,E, F). Unfortunately, this is not
the case. The difficulty is that, in Algorithm PrintFixed, all arithmetic
operations are performed in the internal radix b, and we do not have such
operations in radix B (see however Exercise 1.37).

128 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

3.7 Exercises

Exercise 3.1 In §3.1.5 we described a trick to get the next floating-point number
in the direction away from zero. Determine for which IEEE 754 double-precision
numbers the trick works.

Exercise 3.2 (Kidder, Boldo) Assume a binary representation. The “round-
ing to odd” mode [42, 149, 221] is defined as follows: in case the exact value is
not representable, it rounds to the unique adjacent number with an odd signif-
icand. (“Von Neumann rounding” [42] omits the test for the exact value being
representable or not, and rounds to odd in all nonzero cases.) Note that overflow
never occurs during rounding to odd. Prove that if y = round(x, p + k, odd) and
z = round(y, p,nearest even), and k > 1, then z = round(x, p,nearest even), i.e.,
the double-rounding problem does not occur.

Exercise 3.3 Show that, if
√
a is computed using Newton’s iteration for a−1/2:

x′ = x+
3

2
(1− ax2)

(see §3.5.1), and the identity
√
a = a×a−1/2, with rounding mode “round towards

zero”, then it might never be possible to determine the correctly rounded value of√
a, regardless of the number of additional guard digits used in the computation.

Exercise 3.4 How does truncating the operands of a multiplication to n + g
digits (as suggested in §3.3) affect the accuracy of the result? Considering the
cases g = 1 and g > 1 separately, what could happen if the same strategy were
used for subtraction?

Exercise 3.5 Is the bound of Theorem 3.3.1 optimal?

Exercise 3.6 Adapt Mulders’ short product algorithm [174] to floating-point
numbers. In case the first rounding fails, can you compute additional digits with-
out starting again from scratch?

Exercise 3.7 Show that, if a balanced ternary system is used (radix 3 with digits
{0,±1}), then “round to nearest” is equivalent to truncation.

Exercise 3.8 (Percival) Suppose we compute the product of two complex
floating-point numbers z0 = a0 + ib0 and z1 = a1 + ib1 in the following way:
xa = ◦(a0a1), xb = ◦(b0b1), ya = ◦(a0b1), yb = ◦(a1b0), z = ◦(xa−xb)+i◦(ya+yb).
All computations are done in precision n, with rounding to nearest. Compute an
error bound of the form |z − z0z1| ≤ c2−n|z0z1|. What is the best possible con-
stant c?

Modern Computer Arithmetic, §3.7 129

Exercise 3.9 Show that, if µ = O(ε) and nε < 1, the bound in Theorem 3.3.2
simplifies to

||z′ − z||∞ = O(|x| · |y| · nε).
If the rounding errors cancel we expect the error in each component of z′ to be
O(|x|·|y|·n1/2ε). The error ||z′−z||∞ could be larger since it is a maximum of N =
2n component errors. Using your favourite implementation of the FFT, compare
the worst-case error bound given by Theorem 3.3.2 with the error ||z′ − z||∞ that
occurs in practice.

Exercise 3.10 (Enge) Design an algorithm that correctly rounds the product of
two complex floating-point numbers with 3 multiplications only. [Hint: assume all
operands and the result have n-bit significand.]

Exercise 3.11 Write a computer program to check the entries of Table 3.3 are
correct and optimal, given Theorem 3.3.2.

Exercise 3.12 (Bodrato) Assuming one uses an FFT modulo βm − 1 in the
wrap-around trick, how should one modify step 5 of ApproximateReciprocal?

Exercise 3.13 To perform k divisions with the same divisor, which of Algorithm
DivideNewton and Barrett’s algorithm is faster?

Exercise 3.14 Adapt Algorithm FPSqrt to the rounding to nearest mode.

Exercise 3.15 Devise an algorithm similar to Algorithm FPSqrt but using Al-
gorithm ApproximateRecSquareRoot to compute an n/2-bit approximation
to x−1/2, and doing one Newton-like correction to return an n-bit approximation
to x1/2. In the FFT range, your algorithm should take time ∼3M(n) (or better).

Exercise 3.16 Prove that for any n-bit floating-point numbers (x, y) 6= (0, 0),
and if all computations are correctly rounded, with the same rounding mode, the
result of x/

√
x2 + y2 lies in [−1, 1], except in a special case. What is this special

case and for what rounding mode does it occur?

Exercise 3.17 Show that the computation of E in AlgorithmPrintFixed, step 2,
is correct — i.e., E = 1 + ⌊(e− 1) log b/ logB⌋ — as long as there is no integer
n such that |n/(e− 1) logB/ log b− 1| < ε, where ε is the relative precision when
computing λ: λ = logB/ log b(1 + θ) with |θ| ≤ ε. For a fixed range of exponents
−emax ≤ e ≤ emax, deduce a working precision ε. Application: for b = 2, and
emax = 231, compute the required precision for 3 ≤ B ≤ 36.

130 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Exercise 3.18 (Lefèvre) The IEEE 754-1985 standard required binary to deci-
mal conversions to be correctly rounded in the range m ·10n for |m| ≤ 1017−1 and
|n| ≤ 27 in double precision. Find the hardest-to-print double-precision number
in this range (with rounding to nearest, for example). Write a C program that
outputs double-precision numbers in this range, and compare it to the sprintf

C-language function of your system. Similarly for a conversion from the IEEE
754-2008 binary64 format (significand of 53 bits, 2−1074 ≤ |x| < 21024) to the
decimal64 format (significand of 16 decimal digits).

Exercise 3.19 The same question as in Exercise 3.18, but for decimal to binary
conversion, and the atof C-language function.

3.8 Notes and References

In her PhD thesis [163, Chapter V], Valérie Ménissier-Morain discusses contin-
ued fractions and redundant representations as alternatives to the classical non-
redundant representation considered here. She also considers [163, Chapter III]
the theory of computable reals, their representation by B-adic numbers, and the
computation of algebraic or transcendental functions.

Other representations were designed to increase the range of representable
values; in particular Clenshaw and Olver [70] invented level-index arithmetic, where
for example 2009 is approximated by 3.7075, since 2009 ≈ exp(exp(exp(0.7075))),
and the leading 3 indicates the number of iterated exponentials. The obvious
drawback is that it is expensive to perform arithmetic operations such as addition
on numbers in the level-index representation.

Clenshaw and Olver [69] also introduced the idea of unrestricted algorithm
(meaning no restrictions on the precision or exponent range). Several such algo-
rithms were described in [48].

Nowadays most computers use radix two, but other choices (for example radix
16) were popular in the past, before the widespread adoption of the IEEE 754
standard. A discussion of the best choice of radix is given in [42].

For a general discussion of floating-point addition, rounding modes, the sticky
bit, etc., see Hennessy, Patterson and Goldberg [120, Appendix A.4].4

The main reference for floating-point arithmetic is the IEEE 754 standard [5],
which defines four binary formats: single precision, single extended (deprecated),
double precision, and double extended. The IEEE 854 standard [72] defines radix-
independent arithmetic, and mainly decimal arithmetic. Both standards were

4We refer to the first edition as later editions may not include the relevant Appendix
by Goldberg.

Modern Computer Arithmetic, §3.8 131

replaced by the revision of IEEE 754 (approved by the IEEE Standards Committee
on June 12, 2008).

We have not found the source of Theorem 3.1.1 — it seems to be “folklore”.
The rule regarding the precision of a result given possibly differing precisions of
the operands was considered by Brent [49] and Hull [127].

Floating-point expansions were introduced by Priest [187]. They are mainly
useful for a small number of summands, typically two or three, and when the main
operations are additions or subtractions. For a larger number of summands the
combinatorial logic becomes complex, even for addition. Also, except in simple
cases, it seems difficult to obtain correct rounding with expansions.

Some good references on error analysis of floating-point algorithms are the
books by Higham [121] and Muller [175]. Older references include Wilkinson’s
classics [229, 230].

Collins and Krandick [74], and Lefèvre [154], proposed algorithms for multiple-
precision floating-point addition.

The problem of leading zero anticipation and detection in hardware is classical;
see [195] for a comparison of different methods. Sterbenz’s theorem may be found
in his book [211].

The idea of having a “short product” together with correct rounding was stud-
ied by Krandick and Johnson [146]. They attributed the term “short product”
to Knuth. They considered both the schoolbook and the Karatsuba domains.
Algorithms ShortProduct and ShortDivision are due to Mulders [174]. The
problem of consecutive zeros or ones — also called runs of zeros or ones — has
been studied by several authors in the context of computer arithmetic: Iordache
and Matula [129] studied division (Theorem 3.4.1), square root, and reciprocal
square root. Muller and Lang [152] generalised their results to algebraic functions.

The Fast Fourier Transform (FFT) using complex floating-point numbers and
the Schönhage-Strassen algorithm are described in Knuth [143]. Many variations
of the FFT are discussed in the books by Crandall [79, 80]. For further references,
see §2.9.

Theorem 3.3.2 is from Percival [184]; previous rigorous error analyses of com-
plex FFT gave very pessimistic bounds. Note that [55] corrects the erroneous proof
given in [184] (see also Exercise 3.8).

The concept of “middle product” for power series is discussed in Hanrot et
al. [111]. Bostan, Lecerf and Schost [40] have shown that it can be seen as a
special case of “Tellegen’s principle”, and have generalised it to operations other
than multiplication. The link between usual multiplication and the middle prod-
uct using trilinear forms was mentioned by Victor Pan [182] for the multiplication
of two complex numbers: “The duality technique enables us to extend any suc-
cessful bilinear algorithms to two new ones for the new problems, sometimes quite

132 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

different from the original problem · · · ” David Harvey [115] has shown how to effi-
ciently implement the middle product for integers. A detailed and comprehensive
description of the Payne and Hanek argument reduction method can be found in
Muller [175].

In this section we drop the “∼” that strictly should be included in the complex-
ity bounds. The 2M(n) reciprocal algorithm of §3.4.1 — with the wrap-around
trick — is due to Schönhage, Grotefeld and Vetter [199]. It can be improved, as
noticed by Dan Bernstein [20]. If we keep the FFT-transform of x, we can save
M(n)/3 (assuming the term-to-term products have negligible cost), which gives
5M(n)/3. Bernstein also proposes a “messy” 3M(n)/2 algorithm [20]. Schönhage’s
3M(n)/2 algorithm is simpler [198]. The idea is to write Newton’s iteration as
x′ = 2x − ax2. If x is accurate to n/2 bits, then ax2 has (in theory) 2n bits, but
we know the upper n/2 bits cancel with x, and we are not interested in the low
n bits. Thus we can perform modular FFTs of size 3n/2, with cost M(3n/4) for
the last iteration, and 1.5M(n) overall. This 1.5M(n) bound for the reciprocal
was improved to 1.444M(n) by Harvey [116]. See also [78] for the roundoff error
analysis when using a floating-point multiplier.

The idea of incorporating the dividend in Algorithm DivideNewton is due
to Karp and Markstein [138], and is usually known as the Karp-Markstein trick;
we already used it in Algorithm ExactDivision in Chapter 1. The asymptotic
complexity 5M(n)/2 of floating-point division can be improved to 5M(n)/3, as
shown by van der Hoeven in [125]. Another well-known method to perform a
floating-point division is Goldschmidt’s iteration: starting from a/b, first find c
such that b1 = cb is close to 1, and a/b = a1/b1 with a1 = ca. At step k, as-
suming a/b = ak/bk, we multiply both ak and bk by 2− bk, giving ak+1 and bk+1.
The sequence (bk) converges to 1, and (ak) converges to a/b. Goldschmidt’s iter-
ation works because, if bk = 1 + εk with εk small, then bk+1 = (1 + εk)(1 − εk)
= 1 − ε2k. Goldschmidt’s iteration admits quadratic convergence like Newton’s
method. However, unlike Newton’s method, Goldschmidt’s iteration is not self-
correcting. Thus, it yields an arbitrary precision division with cost Θ(M(n) log n).
For this reason, Goldschmidt’s iteration should only be used for small, fixed preci-
sion. A detailed analysis of Goldschmidt’s algorithms for division and square root,
and a comparison with Newton’s method, is given in Markstein [159].

Bernstein [20] obtained faster square root algorithms in the FFT domain, by
caching some Fourier transforms. More precisely, he obtained 11M(n)/6 for the
square root, and 5M(n)/2 for the simultaneous computation of x1/2 and x−1/2.
The bound for the square root was reduced to 4M(n)/3 by Harvey [116].

Classical floating-point conversion algorithms are due to Steele and White
[208], Gay [103], and Clinger [71]; most of these authors assume fixed precision.
Cowlishaw maintains an extensive bibliography of conversion to and from deci-

Modern Computer Arithmetic, §3.8 133

mal formats (see §5.3). What we call “free-format” output is called “idempotent
conversion” by Kahan [133]; see also Knuth [143, exercise 4.4-18]. Another useful
reference on binary to decimal conversion is Cornea et al. [77].

Bürgisser, Clausen and Shokrollahi [59] is an excellent book on topics such
as lower bounds, fast multiplication of numbers and polynomials, Strassen-like
algorithms for matrix multiplication, and the tensor rank problem.

There is a large literature on interval arithmetic, which is outside the scope of
this chapter. A recent book is Kulisch [150], and a good entry point is the Interval
Computations web page (see Chapter 5).

In this chapter we did not consider complex arithmetic, except where rele-
vant for its use in the FFT. An algorithm for the complex (floating-point) square
root, which allows correct rounding, is given in [91]. See also the comments on
Friedland’s algorithm in §4.12.

Chapter 4

Elementary and Special
Function Evaluation

Here we consider various applications of Newton’s method, which
can be used to compute reciprocals, square roots, and more gen-
erally algebraic and functional inverse functions. We then con-
sider unrestricted algorithms for computing elementary and spe-
cial functions. The algorithms of this chapter are presented at a
higher level than in Chapter 3. A full and detailed analysis of
one special function might be the subject of an entire chapter!

4.1 Introduction

This chapter is concerned with algorithms for computing elementary and
special functions, although the methods apply more generally. First we con-
sider Newton’s method, which is useful for computing inverse functions. For
example, if we have an algorithm for computing y = ln x, then Newton’s
method can be used to compute x = exp y (see §4.2.5). However, Newton’s
method has many other applications. In fact we already mentioned Newton’s
method in Chapters 1–3, but here we consider it in more detail.

After considering Newton’s method, we go on to consider various meth-
ods for computing elementary and special functions. These methods in-
clude power series (§4.4), asymptotic expansions (§4.5), continued fractions
(§4.6), recurrence relations (§4.7), the arithmetic-geometric mean (§4.8), bi-
nary splitting (§4.9), and contour integration (§4.10). The methods that we
consider are unrestricted in the sense that there is no restriction on the at-

136 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

tainable precision — in particular, it is not limited to the precision of IEEE
standard 32-bit or 64-bit floating-point arithmetic. Of course, this depends
on the availability of a suitable software package for performing floating-point
arithmetic on operands of arbitrary precision, as discussed in Chapter 3.

Unless stated explicitly, we do not consider rounding issues in this chapter;
it is assumed that methods described in Chapter 3 are used. Also, to simplify
the exposition, we assume a binary radix (β = 2), although most of the
content could be extended to any radix. We recall that n denotes the relative
precision (in bits here) of the desired approximation; if the absolute computed
value is close to 1, then we want an approximation to within 2−n.

4.2 Newton’s Method

Newton’s method is a major tool in arbitrary-precision arithmetic. We have
already seen it or its p-adic counterpart, namely Hensel lifting, in previous
chapters (see for example Algorithm ExactDivision in §1.4.5, or the itera-
tion (2.3) to compute a modular inverse in §2.5). Newton’s method is also
useful in small precision: most modern processors only implement addition
and multiplication in hardware; division and square root are microcoded,
using either Newton’s method if a fused multiply-add instruction is avail-
able, or the SRT algorithm. See the algorithms to compute a floating-point
reciprocal or reciprocal square root in §3.4.1 and §3.5.1.

This section discusses Newton’s method is more detail, in the context of
floating-point computations, for the computation of inverse roots (§4.2.1),
reciprocals (§4.2.2), reciprocal square roots (§4.2.3), formal power series
(§4.2.4), and functional inverses (§4.2.5). We also discuss higher order Newton-
like methods (§4.2.6).

Newton’s Method via Linearisation

Recall that a function f of a real variable is said to have a zero ζ if f(ζ) = 0.
If f is differentiable in a neighbourhood of ζ , and f ′(ζ) 6= 0, then ζ is said
to be a simple zero. Similarly for functions of several real (or complex)
variables. In the case of several variables, ζ is a simple zero if the Jacobian
matrix evaluated at ζ is nonsingular.

Newton’s method for approximating a simple zero ζ of f is based on the
idea of making successive linear approximations to f(x) in a neighbourhood

Modern Computer Arithmetic, §4.2 137

of ζ . Suppose that x0 is an initial approximation, and that f(x) has two
continuous derivatives in the region of interest. From Taylor’s theorem,1

f(ζ) = f(x0) + (ζ − x0)f
′(x0) +

(ζ − x0)
2

2
f ′′(ξ) (4.1)

for some point ξ in an interval including {ζ, x0}. Since f(ζ) = 0, we see that

x1 = x0 − f(x0)/f
′(x0)

is an approximation to ζ , and

x1 − ζ = O
(
|x0 − ζ |2

)
.

Provided x0 is sufficiently close to ζ , we will have

|x1 − ζ | ≤ |x0 − ζ |/2 < 1.

This motivates the definition of Newton’s method as the iteration

xj+1 = xj −
f(xj)

f ′(xj)
, j = 0, 1, . . . (4.2)

Provided |x0 − ζ | is sufficiently small, we expect xn to converge to ζ . The
order of convergence will be at least two, that is

|en+1| ≤ K|en|2

for some constant K independent of n, where en = xn − ζ is the error after
n iterations.

A more careful analysis shows that

en+1 =
f ′′(ζ)

2f ′(ζ)
e2n +O

(
|e3n|
)
, (4.3)

provided f ∈ C3 near ζ . Thus, the order of convergence is exactly two if
f ′′(ζ) 6= 0 and e0 is sufficiently small but nonzero. (Such an iteration is also
said to be quadratically convergent.)

1Here we use Taylor’s theorem at x0, since this yields a formula in terms of derivatives
at x0, which is known, instead of at ζ, which is unknown. Sometimes (for example in the
derivation of (4.3)), it is preferable to use Taylor’s theorem at the (unknown) zero ζ.

138 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

4.2.1 Newton’s Method for Inverse Roots

Consider applying Newton’s method to the function

f(x) = y − x−m,

where m is a positive integer constant, and (for the moment) y is a positive
constant. Since f ′(x) = mx−(m+1), Newton’s iteration simplifies to

xj+1 = xj + xj(1− xm
j y)/m. (4.4)

This iteration converges to ζ = y−1/m provided the initial approximation x0

is sufficiently close to ζ . It is perhaps surprising that (4.4) does not involve
divisions, except for a division by the integer constant m. In particular, we
can easily compute reciprocals (the case m = 1) and reciprocal square roots
(the case m = 2) by Newton’s method. These cases are sufficiently important
that we discuss them separately in the following subsections.

4.2.2 Newton’s Method for Reciprocals

Taking m = 1 in (4.4), we obtain the iteration

xj+1 = xj + xj(1− xjy) (4.5)

which we expect to converge to 1/y provided x0 is a sufficiently good ap-
proximation. (See §3.4.1 for a concrete algorithm with error analysis.) To
see what “sufficiently good” means, define

uj = 1− xjy.

Note that uj → 0 if and only if xj → 1/y. Multiplying each side of (4.5)
by y, we get

1− uj+1 = (1− uj)(1 + uj),

which simplifies to
uj+1 = u2

j . (4.6)

Thus
uj = (u0)

2j . (4.7)

We see that the iteration converges if and only if |u0| < 1, which (for real x0

and y) is equivalent to the condition x0y ∈ (0, 2). Second-order convergence

Modern Computer Arithmetic, §4.2 139

is reflected in the double exponential with exponent 2 on the right-hand-side
of (4.7).

The iteration (4.5) is sometimes implemented in hardware to compute re-
ciprocals of floating-point numbers (see §4.12). The sign and exponent of the
floating-point number are easily handled, so we can assume that y ∈ [0.5, 1.0)
(recall we assume a binary radix in this chapter). The initial approximation
x0 is found by table lookup, where the table is indexed by the first few bits of
y. Since the order of convergence is two, the number of correct bits approxi-
mately doubles at each iteration. Thus, we can predict in advance how many
iterations are required. Of course, this assumes that the table is initialised
correctly.2

Computational Issues

At first glance, it seems better to replace Eqn. (4.5) by

xj+1 = xj(2− xjy), (4.8)

which looks simpler. However, although those two forms are mathematically
equivalent, they are not computationally equivalent. Indeed, in Eqn. (4.5),
if xj approximates 1/y to within n/2 bits, then 1− xjy = O(2−n/2), and the
product of xj by 1 − xjy might be computed with a precision of only n/2
bits. In the apparently simpler form (4.8), 2− xjy = 1 +O(2−n/2), thus the
product of xj by 2− xjy has to be performed with a full precision of n bits,
to get xj+1 accurate to within n bits.

As a general rule, it is best to separate the terms of different order in
Newton’s iteration, and not try to factor common expressions. For an ex-
ception, see the discussion of Schönhage’s 3M(n)/2 reciprocal algorithm in
§3.8.

4.2.3 Newton’s Method for (Reciprocal) Square Roots

Taking m = 2 in (4.4), we obtain the iteration

xj+1 = xj + xj(1− x2
jy)/2, (4.9)

2In the case of the infamous Pentium fdiv bug [109, 176], a lookup table used for
division was initialised incorrectly, and the division was occasionally inaccurate. In this
case division used the SRT algorithm, but the moral is the same – tables must be initialised
correctly.

140 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

which we expect to converge to y−1/2 provided x0 is a sufficiently good ap-
proximation.

If we want to compute y1/2, we can do this in one multiplication after
first computing y−1/2, since

y1/2 = y × y−1/2.

This method does not involve any divisions (except by 2, see Ex. 3.15). In
contrast, if we apply Newton’s method to the function f(x) = x2 − y, we
obtain Heron’s3 iteration (see Algorithm SqrtInt in §1.5.1) for the square
root of y:

xj+1 =
1

2

(
xj +

y

xj

)
. (4.10)

This requires a division by xj at iteration j, so it is essentially different from
the iteration (4.9). Although both iterations have second-order convergence,
we expect (4.9) to be more efficient (however this depends on the relative
cost of division compared to multiplication). See also §3.5.1 and, for various
optimisations, §3.8.

4.2.4 Newton’s Method for Formal Power Series

This section is not required for function evaluation, however it gives a com-
plementary point of view on Newton’s method, and has applications to com-
puting constants such as Bernoulli numbers (see Exercises 4.41–4.42).

Newton’s method can be applied to find roots of functions defined by
formal power series as well as of functions of a real or complex variable. For
simplicity we consider formal power series of the form

A(z) = a0 + a1z + a2z
2 + · · ·

where ai ∈ R (or any field of characteristic zero) and ord(A) = 0, i.e., a0 6= 0.
For example, if we replace y in (4.5) by 1 − z, and take initial approxi-

mation x0 = 1, we obtain a quadratically-convergent iteration for the formal
power series

(1− z)−1 =
∞∑

n=0

zn.

3Heron of Alexandria, circa 10–75 AD.

Modern Computer Arithmetic, §4.2 141

In the case of formal power series, “quadratically convergent” means that
ord(ej) → +∞ like 2j, where ej is the difference between the desired result
and the jth approximation. In our example, with the notation of §4.2.2,
u0 = 1− x0y = z, so uj = z2

j

and

xj =
1− uj

1− z
=

1

1− z
+O

(
z2

j
)
.

Given a formal power series A(z) =
∑

j≥0 ajz
j , we can define the formal

derivative
A′(z) =

∑

j>0

jajz
j−1 = a1 + 2a2z + 3a3z

2 + · · · ,

and the integral ∑

j≥0

aj
j + 1

zj+1,

but there is no useful analogue for multiple-precision integers
∑n

j=0 ajβ
j.

This means that some fast algorithms for operations on power series have no
analogue for operations on integers (see for example Exercise 4.1).

4.2.5 Newton’s Method for Functional Inverses

Given a function g(x), its functional inverse h(x) satisfies g(h(x)) = x, and
is denoted by h(x) := g(−1)(x). For example, g(x) = ln x and h(x) = exp x
are functional inverses, as are g(x) = tanx and h(x) = arctan x. Using the
function f(x) = y − g(x) in (4.2), one gets a root ζ of f , i.e., a value such
that g(ζ) = y, or ζ = g(−1)(y):

xj+1 = xj +
y − g(xj)

g′(xj)
.

Since this iteration only involves g and g′, it provides an efficient way to
evaluate h(y), assuming that g(xj) and g′(xj) can be efficiently computed.
Moreover, if the complexity of evaluating g′ — and of division — is no greater
than that of g, we get a means to evaluate the functional inverse h of g with
the same order of complexity as that of g.

As an example, if one has an efficient implementation of the logarithm,
a similarly efficient implementation of the exponential is deduced as follows.
Consider the root ey of the function f(x) = y−ln x, which yields the iteration:

xj+1 = xj + xj(y − ln xj), (4.11)

142 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

and in turn Algorithm LiftExp (for the sake of simplicity, we consider here
only one Newton iteration).

Algorithm 4.1 LiftExp

Input: xj , (n/2)-bit approximation to exp(y)
Output: xj+1, n-bit approximation to exp(y)
t← ln xj ⊲ t computed to n-bit accuracy
u← y − t ⊲ u computed to (n/2)-bit accuracy
v ← xju ⊲ v computed to (n/2)-bit accuracy
xj+1 ← xj + v.

4.2.6 Higher Order Newton-like Methods

The classical Newton’s method is based on a linear approximation of f(x)
near x0. If we use a higher-order approximation, we can get a higher-order
method. Consider for example a second-order approximation. Equation (4.1)
becomes:

f(ζ) = f(x0) + (ζ − x0)f
′(x0) +

(ζ − x0)
2

2
f ′′(x0) +

(ζ − x0)
3

6
f ′′′(ξ).

Since f(ζ) = 0, we have

ζ = x0 −
f(x0)

f ′(x0)
− (ζ − x0)

2

2

f ′′(x0)

f ′(x0)
+O((ζ − x0)

3). (4.12)

A difficulty here is that the right-hand-side of (4.12) involves the unknown ζ .
Let ζ = x0 − f(x0)/f

′(x0) + ν, where ν is a second-order term. Substituting
this in the right-hand-side of (4.12) and neglecting terms of order (ζ − x0)

3

yields the cubic iteration:

xj+1 = xj −
f(xj)

f ′(xj)
− f(xj)

2f ′′(xj)

2f ′(xj)3
.

For the computation of the reciprocal (§4.2.2) with f(x) = y − 1/x, this
yields

xj+1 = xj + xj(1− xjy) + xj(1− xjy)
2. (4.13)

Modern Computer Arithmetic, §4.3 143

For the computation of exp y using functional inversion (§4.2.5), one gets:

xj+1 = xj + xj(y − ln xj) +
1

2
xj(y − ln xj)

2. (4.14)

These iterations can be obtained in a more systematic way that generalises
to give iterations of arbitrarily high order. For the computation of the recip-
rocal, let εj = 1− xjy, so xjy = 1− εj and (assuming |εj| < 1),

1/y = xj/(1− εj) = xj(1 + εj + ε2j + · · ·).

Truncating after the term εk−1
j gives a k-th order iteration

xj+1 = xj(1 + εj + ε2j + · · ·+ εk−1
j) (4.15)

for the reciprocal. The case k = 2 corresponds to Newton’s method, and the
case k = 3 is just the iteration (4.13) that we derived above.

Similarly, for the exponential we take εj = y − ln xj = ln(x/xj), so

x/xj = exp εj =

∞∑

m=0

εmj
m!

.

Truncating after k terms gives a k-th order iteration

xj+1 = xj

(
k−1∑

m=0

εmj
m!

)
(4.16)

for the exponential function. The case k = 2 corresponds to the Newton
iteration, the case k = 3 is the iteration (4.14) that we derived above, and
the cases k > 3 give higher-order Newton-like iterations. For a generalisation
to other functions, see Exercises 4.3, 4.6.

4.3 Argument Reduction

Argument reduction is a classical method to improve the efficiency of the
evaluation of mathematical functions. The key idea is to reduce the initial
problem to a domain where the function is easier to evaluate. More precisely,
given f to evaluate at x, one proceeds in three steps:

144 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

• argument reduction: x is transformed into a reduced argument x′;

• evaluation: f is evaluated at x′;

• reconstruction: f(x) is computed from f(x′) using a functional identity.

In some cases the argument reduction or the reconstruction is trivial, for
example x′ = x/2 in radix 2, or f(x) = ±f(x′) (some examples illustrate this
below). It might also be that the evaluation step uses a different function g
instead of f ; for example sin(x+ π/2) = cos(x).

Unfortunately, argument reduction formulæ do not exist for every func-
tion; for example, no argument reduction is known for the error function.
Argument reduction is only possible when a functional identity relates f(x)
and f(x′) (or g(x) and g(x′)). The elementary functions have addition for-
mulae such as

exp(x+ y) = exp(x) exp(y),

log(xy) = log(x) + log(y),

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y),

tan(x+ y) =
tan(x) + tan(y)

1− tan(x) tan(y)
. (4.17)

We use these formulæ to reduce the argument so that power series converge
more rapidly. Usually we take x = y to get doubling formulae such as

exp(2x) = exp(x)2, (4.18)

though occasionally tripling formulae such as

sin(3x) = 3 sin(x)− 4 sin3(x)

might be useful. This tripling formula only involves one function (sin),
whereas the doubling formula sin(2x) = 2 sinx cos x involves two functions
(sin and cos), but this problem can be overcome: see §4.3.4 and §4.9.1.

We usually distinguish two kinds of argument reduction:

• additive argument reduction, where x′ = x− kc, for some real constant
c and some integer k. This occurs in particular when f(x) is periodic,
for example for the sine and cosine functions with c = 2π;

Modern Computer Arithmetic, §4.3 145

• multiplicative argument reduction, where x′ = x/ck for some real con-
stant c and some integer k. This occurs with c = 2 in the computation
of exp x when using the doubling formula (4.18): see §4.3.1.

Note that, for a given function, both kinds of argument reduction might be
available. For example, for sin x, one might either use the tripling formula
sin(3x) = 3 sin x − 4 sin3 x, or the additive reduction sin(x + 2kπ) = sin x
that arises from the periodicity of sin.

Sometime “reduction” is not quite the right word, since a functional iden-
tity is used to increase rather than to decrease the argument. For example,
the Gamma function Γ(x) satisfies an identity

xΓ(x) = Γ(x+ 1),

that can be used repeatedly to increase the argument until we reach the region
where Stirling’s asymptotic expansion is sufficiently accurate, see §4.5.

4.3.1 Repeated Use of a Doubling Formula

If we apply the doubling formula (4.18) for the exponential function k times,
we get

exp(x) = exp(x/2k)2
k

.

Thus, if |x| = Θ(1), we can reduce the problem of evaluating exp(x) to that
of evaluating exp(x/2k), where the argument is now O(2−k). This is better
since the power series converges more quickly for x/2k. The cost is the k
squarings that we need to reconstruct the final result from exp(x/2k).

There is a trade-off here, and k should be chosen to minimise the total
time. If the obvious method for power series evaluation is used, then the
optimal k is of order

√
n and the overall time is O(n1/2M(n)). We shall see

in §4.4.3 that there are faster ways to evaluate power series, so this is not
the best possible result.

We assumed here that |x| = Θ(1). A more careful analysis shows that
the optimal k depends on the order of magnitude of x (see Exercise 4.5).

4.3.2 Loss of Precision

For some power series, especially those with alternating signs, a loss of pre-
cision might occur due to a cancellation between successive terms. A typical

146 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

example is the series for exp(x) when x < 0. Assume for example that we
want 10 significant digits of exp(−10). The first ten terms xk/k! for x = −10
are approximately:

1.,−10., 50.,−166.6666667, 416.6666667,−833.3333333, 1388.888889,
−1984.126984, 2480.158730,−2755.731922.

Note that these terms alternate in sign and initially increase in magnitude.
They only start to decrease in magnitude for k > |x|. If we add the first 51
terms with a working precision of 10 decimal digits, we get an approximation
to exp(−10) that is only accurate to about 3 digits!

A much better approach is to use the identity

exp(x) = 1/ exp(−x)

to avoid cancellation in the power series summation. In other cases a different
power series without sign changes might exist for a closely related function:
for example, compare the series (4.22) and (4.23) for computation of the error
function erf(x). See also Exercises 4.19–4.20.

4.3.3 Guard Digits

Guard digits are digits in excess of the number of digits that are required in
the final answer. Generally, it is necessary to use some guard digits during
a computation in order to obtain an accurate result (one that is correctly
rounded or differs from the correctly rounded result by a small number of
units in the last place). Of course, it is expensive to use too many guard
digits. Thus, care has to be taken to use the right number of guard digits,
that is the right working precision. Here and below, we use the generic term
“guard digits”, even for radix β = 2.

Consider once again the example of exp x, with reduced argument x/2k

and x = Θ(1). Since x/2k is O(2−k), when we sum the power series
1+x/2k+ · · · from left to right (forward summation), we “lose” about k bits
of precision. More precisely, if x/2k is accurate to n bits, then 1 + x/2k is
accurate to n+ k bits, but if we use the same working precision n, we obtain
only n correct bits. After squaring k times in the reconstruction step, about
k bits will be lost (each squaring loses about one bit), so the final accuracy
will be only n−k bits. If we summed the power series in reverse order instead
(backward summation), and used a working precision of n+ k when adding

Modern Computer Arithmetic, §4.4 147

1 and x/2k + · · · and during the squarings, we would obtain an accuracy of
n+k bits before the k squarings, and an accuracy of n bits in the final result.

Another way to avoid loss of precision is to evaluate expm1(x/2k), where
the function expm1 is defined by

expm1(x) = exp(x)− 1

and has a doubling formula that avoids loss of significance when |x| is small.
See Exercises 4.7–4.9.

4.3.4 Doubling versus Tripling

Suppose we want to compute the function sinh(x) = (ex − e−x)/2. The
obvious doubling formula for sinh,

sinh(2x) = 2 sinh(x) cosh(x),

involves the auxiliary function cosh(x) = (ex + e−x)/2. Since cosh2(x) −
sinh2(x) = 1, we could use the doubling formula

sinh(2x) = 2 sinh(x)

√
1 + sinh2(x),

but this involves the overhead of computing a square root. This suggests
using the tripling formula

sinh(3x) = sinh(x)(3 + 4 sinh2(x)). (4.19)

However, it is usually more efficient to do argument reduction via the dou-
bling formula (4.18) for exp, because it takes one multiplication and one
squaring to apply the tripling formula, but only two squarings to apply the
doubling formula twice (and 3 < 22). A drawback is loss of precision, caused
by cancellation in the computation of exp(x) − exp(−x), when |x| is small.
In this case it is better to use (see Exercise 4.10)

sinh(x) = (expm1(x)− expm1(−x))/2. (4.20)

See §4.12 for further comments on doubling versus tripling, especially in the
FFT range.

148 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

4.4 Power Series

Once argument reduction has been applied, where possible (§4.3), one is
usually faced with the evaluation of a power series. The elementary and
special functions have power series expansions such as:

exp x =
∑

j≥0

xj

j!
, ln(1 + x) =

∑

j≥0

(−1)jxj+1

j + 1
,

arctan x =
∑

j≥0

(−1)jx2j+1

2j + 1
, sinh x =

∑

j≥0

x2j+1

(2j + 1)!
, etc.

This section discusses several techniques to recommend or to avoid. We use
the following notations: x is the evaluation point, n is the desired precision,
and d is the number of terms retained in the power series, or d − 1 is the
degree of the corresponding polynomial

∑
0≤j<d ajx

j .

If f(x) is analytic in a neighbourhood of some point c, an obvious method
to consider for the evaluation of f(x) is summation of the Taylor series

f(x) =

d−1∑

j=0

(x− c)j
f (j)(c)

j!
+Rd(x, c).

As a simple but instructive example we consider the evaluation of exp(x)
for |x| ≤ 1, using

exp(x) =
d−1∑

j=0

xj

j!
+Rd(x), (4.21)

where |Rd(x)| ≤ |x|d exp(|x|)/d! ≤ e/d!.

Using Stirling’s approximation for d!, we see that d ≥ K(n) ∼ n/ lgn
is sufficient to ensure that |Rd(x)| = O(2−n). Thus, the time required to
evaluate (4.21) with Horner’s rule4 is O(nM(n)/ logn).

4By Horner’s rule (with argument x) we mean evaluating the polynomial s0 =∑
0≤j≤d ajx

j of degree d (not d − 1 in this footnote) by the recurrence sd = ad,

sj = aj + sj+1x for j = d − 1, d − 2, . . . , 0. Thus sk =
∑

k≤j≤d ajx
j−k. An evalua-

tion by Horner’s rule takes d additions and d multiplications, and is more efficient than
explicitly evaluating the individual terms ajx

j .

Modern Computer Arithmetic, §4.4 149

In practice it is convenient to sum the series in the forward direction
(j = 0, 1, . . . , d− 1). The terms tj = xj/j! and partial sums

Sj =

j∑

i=0

ti

may be generated by the recurrence tj = xtj−1/j, Sj = Sj−1 + tj, and the
summation terminated when |td| < 2−n/e. Thus, it is not necessary to esti-
mate d in advance, as it would be if the series were summed by Horner’s rule
in the backward direction (j = d−1, d−2, . . . , 0) (see however Exercise 4.4).

We now consider the effect of rounding errors, under the assumption that
floating-point operations are correctly rounded, i.e., satisfy

◦(x op y) = (x op y)(1 + δ),

where |δ| ≤ ε and “op” = “+”, “−”, “×” or “/”. Here ε = 2−n is the
“machine precision” or “working precision”. Let t̂j be the computed value of
tj , etc. Thus

|t̂j − tj | / |tj | ≤ 2jε+O(ε2)

and using
∑d

j=0 tj = Sd ≤ e:

|Ŝd − Sd| ≤ deε+
d∑

j=1

2jε|tj|+O(ε2)

≤ (d+ 2)eε+O(ε2) = O(nε).

Thus, to get |Ŝd − Sd| = O(2−n), it is sufficient that ε = O(2−n/n). In
other words, we need to work with about lg n guard digits. This is not a
significant overhead if (as we assume) the number of digits may vary dynam-
ically. We can sum with j increasing (the forward direction) or decreasing
(the backward direction). A slightly better error bound is obtainable for
summation in the backward direction, but this method has the disadvan-
tage that the number of terms d has to be decided in advance (see however
Exercise 4.4).

In practice it is inefficient to keep the working precision ε fixed. We can
profitably reduce it when computing tj from tj−1 if |tj−1| is small, without

150 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

significantly increasing the error bound. We can also vary the working preci-
sion when accumulating the sum, especially if it is computed in the backward
direction (so the smallest terms are summed first).

It is instructive to consider the effect of relaxing our restriction that
|x| ≤ 1. First suppose that x is large and positive. Since |tj | > |tj−1|
when j < |x|, it is clear that the number of terms required in the sum (4.21)
is at least of order |x|. Thus, the method is slow for large |x| (see §4.3 for
faster methods in this case).

If |x| is large and x is negative, the situation is even worse. From Stirling’s
approximation we have

max
j≥0
|tj | ≃

exp |x|√
2π|x|

,

but the result is exp(−|x|), so about 2|x|/ log 2 guard digits are required to
compensate for what Lehmer called “catastrophic cancellation” [94]. Since
exp(x) = 1/ exp(−x), this problem may easily be avoided, but the corre-
sponding problem is not always so easily avoided for other analytic functions.

Here is a less trivial example. To compute the error function

erf(x) =
2√
π

∫ x

0

e−u2

du,

we may use either the power series

erf(x) =
2x√
π

∞∑

j=0

(−1)j x2j

j!(2j + 1)
(4.22)

or the (mathematically, but not numerically) equivalent

erf(x) =
2xe−x2

√
π

∞∑

j=0

2j x2j

1 · 3 · 5 · · · (2j + 1)
. (4.23)

For small |x|, the series (4.22) is slightly faster than the series (4.23)
because there is no need to compute an exponential. However, the se-
ries (4.23) is preferable to (4.22) for moderate |x| because it involves no
cancellation. For large |x| neither series is satisfactory, because Ω(x2) terms
are required, and in this case it is preferable to use the asymptotic expan-
sion for erfc(x) = 1 − erf(x): see §4.5. In the borderline region use of the
continued fraction (4.40) could be considered: see Exercise 4.31.

Modern Computer Arithmetic, §4.4 151

In the following subsections we consider different methods to evaluate
power series. We generally ignore the effect of rounding errors, but the
results obtained above are typical.

Assumption about the Coefficients

We assume in this section that we have a power series
∑

j≥0 ajx
j where

aj+δ/aj is a rational function R(j) of j, and hence it is easy to evaluate
a0, a1, a2, . . . sequentially. Here δ is a fixed positive constant, usually 1 or 2.
For example, in the case of exp x, we have δ = 1 and

aj+1

aj
=

j!

(j + 1)!
=

1

j + 1
.

Our assumptions cover the common case of hypergeometric functions. For
the more general case of holonomic functions, see §4.9.2.

In common cases where our assumption is invalid, other good methods
are available to evaluate the function. For example, tanx does not satisfy our
assumption (the coefficients in its Taylor series are called tangent numbers
and are related to Bernoulli numbers – see §4.7.2), but to evaluate tanx we
can use Newton’s method on the inverse function (arctan, which does satisfy
our assumptions – see §4.2.5), or we can use tanx = sin x/ cosx.

The Radius of Convergence

If the elementary function is an entire function (e.g., exp, sin) then the power
series converges in the whole complex plane. In this case the degree of the
denominator of R(j) = aj+1/aj is greater than that of the numerator.

In other cases (such as ln, arctan) the function is not entire. The power
series only converges in a disk because the function has a singularity on the
boundary of this disk. In fact ln(x) has a singularity at the origin, which is
why we consider the power series for ln(1 + x). This power series has radius
of convergence 1.

Similarly, the power series for arctan(x) has radius of convergence 1 be-
cause arctan(x) has singularities on the unit circle (at ±i) even though it is
uniformly bounded for all real x.

152 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

4.4.1 Direct Power Series Evaluation

Suppose that we want to evaluate a power series
∑

j≥0 ajx
j at a given argu-

ment x. Using periodicity (in the cases of sin, cos) and/or argument reduction
techniques (§4.3), we can often ensure that |x| is sufficiently small. Thus, let
us assume that |x| ≤ 1/2 and that the radius of convergence of the series is
at least 1.

As above, assume that aj+δ/aj is a rational function of j, and hence easy
to evaluate. For simplicity we consider only the case δ = 1. To sum the
series with error O(2−n) it is sufficient to take n + O(1) terms, so the time
required is O(nM(n)). If the function is entire, then the series converges
faster and the time is reduced to O(nM(n)/(logn)). However, we can do
much better by carrying the argument reduction further, as demonstrated in
the next section.

4.4.2 Power Series With Argument Reduction

Consider the evaluation of exp(x). By applying argument reduction k+O(1)
times, we can ensure that the argument x satisfies |x| < 2−k. Then, to
obtain n-bit accuracy we only need to sum O(n/k) terms of the power series.
Assuming that a step of argument reduction is O(M(n)), which is true for
the elementary functions, the total cost is O((k + n/k)M(n)). Indeed, the
argument reduction and/or reconstruction requires O(k) steps of O(M(n)),
and the evaluation of the power series of order n/k costs (n/k)M(n); so
choosing k ∼ n1/2 gives cost

O
(
n1/2M(n)

)
.

For example, our comments apply to the evaluation of exp(x) using

exp(x) = exp(x/2)2,

to log1p(x) = ln(1 + x) using

log1p(x) = 2 log1p

(
x

1 +
√
1 + x

)
,

and to arctan(x) using

arctan x = 2 arctan

(
x

1 +
√
1 + x2

)
.

Modern Computer Arithmetic, §4.4 153

Note that in the last two cases each step of the argument reduction requires
a square root, but this can be done with cost O(M(n)) by Newton’s method
(§3.5). Thus in all three cases the overall cost is O(n1/2M(n)), although
the implicit constant might be smaller for exp than for log1p or arctan. See
Exercises 4.8–4.9.

Using Symmetries

A not-so-well-known idea is to evaluate ln(1 + x) using the power series

ln

(
1 + y

1− y

)
= 2

∑

j≥0

y2j+1

2j + 1

with y defined by (1 + y)/(1 − y) = 1 + x, i.e., y = x/(2 + x). This saves
half the terms and also reduces the argument, since y < x/2 if x > 0.
Unfortunately this nice idea can be applied only once. For a related example,
see Exercise 4.11.

4.4.3 Rectangular Series Splitting

Once we determine how many terms in the power series are required for the
desired accuracy, the problem reduces to evaluating a truncated power series,
i.e., a polynomial.

Let P (x) =
∑

0≤j<d ajx
j be the polynomial that we want to evaluate,

deg(P) < d. In the general case x is a floating-point number of n bits, and
we aim at an accuracy of n bits for P (x). However the coefficients aj , or
their ratios R(j) = aj+1/aj, are usually small integers or rational numbers
of O(logn) bits. A scalar multiplication involves one coefficient aj and the
variable x (or more generally an n-bit floating-point number), whereas a non-
scalar multiplication involves two powers of x (or more generally two n-bit
floating-point numbers). Scalar multiplications are cheaper because the aj
are small rationals of size O(logn), whereas x and its powers generally have
Θ(n) bits. It is possible to evaluate P (x) with O(

√
n) nonscalar multipli-

cations (plus O(n) scalar multiplications and O(n) additions, using O(
√
n)

storage). The same idea applies, more generally, to evaluation of hypergeo-
metric functions.

154 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Classical Splitting

Suppose d = jk, define y = xk, and write

P (x) =

j−1∑

ℓ=0

yℓPℓ(x) where Pℓ(x) =
k−1∑

m=0

akℓ+m xm.

One first computes the powers x2, x3, . . . , xk−1, xk = y; then the polynomials
Pℓ(x) are evaluated simply by multiplying akℓ+m and the precomputed xm (it
is important not to use Horner’s rule here, since this would involve expensive
nonscalar multiplications). Finally, P (x) is computed from the Pℓ(x) using
Horner’s rule with argument y. To see the idea geometrically, write P (x) as

y0 [a0 + a1x + a2x
2 + · · · + ak−1x

k−1] +
y1 [ak + ak+1x + ak+2x

2 + · · · + a2k−1x
k−1] +

y2 [a2k + a2k+1x + a2k+2x
2 + · · · + a3k−1x

k−1] +
...

...
...

yj−1 [a(j−1)k + a(j−1)k+1x + a(j−1)k+2x
2 + · · · + ajk−1x

k−1]

where y = xk. The terms in square brackets are the polynomials P0(x),
P1(x), . . . , Pj−1(x).

As an example, consider d = 12, with j = 3 and k = 4. This gives
P0(x) = a0 + a1x + a2x

2 + a3x
3, P1(x) = a4 + a5x + a6x

2 + a7x
3, P2(x) =

a8 + a9x + a10x
2 + a11x

3, then P (x) = P0(x) + yP1(x) + y2P2(x), where
y = x4. Here we need to compute x2, x3, x4, which requires three nonscalar
products — note that even powers like x4 should be computed as (x2)2 to
use squarings instead of multiplies — and we need two nonscalar products to
evaluate P (x), thus a total of five nonscalar products, instead of d− 2 = 10
with a naive application of Horner’s rule to P (x).5

Modular Splitting

An alternate splitting is the following, which may be obtained by transposing
the matrix of coefficients above, swapping j and k, and interchanging the
powers of x and y. It might also be viewed as a generalized odd-even scheme

5P (x) has degree d − 1, so Horner’s rule performs d − 1 products, but the first one
x× ad−1 is a scalar product, hence there are d− 2 nonscalar products.

Modern Computer Arithmetic, §4.4 155

(§1.3.5). Suppose as before that d = jk, and write, with y = xj :

P (x) =

j−1∑

ℓ=0

xℓPℓ(y) where Pℓ(y) =
k−1∑

m=0

ajm+ℓ y
m.

First compute y = xj , y2, y3, . . . , yk−1. Now the polynomials Pℓ(y) can be
evaluated using only scalar multiplications of the form ajm+ℓ × ym.

To see the idea geometrically, write P (x) as

x0 [a0 + ajy + a2jy
2 + · · ·] +

x1 [a1 + aj+1y + a2j+1y
2 + · · ·] +

x2 [a2 + aj+2y + a2j+2y
2 + · · ·] +

...
...

...
xj−1 [aj−1 + a2j−1y + a3j−1y

2 + · · ·]

where y = xj . We traverse the first row of the array, then the second row,
then the third, . . ., finally the j-th row, accumulating sums S0, S1, . . . , Sj−1

(one for each row). At the end of this process Sℓ = Pℓ(y) and we only have
to evaluate

P (x) =

j−1∑

ℓ=0

xℓSℓ .

The complexity of each scheme is almost the same (see Exercise 4.12). With
d = 12 (j = 3 and k = 4) we have P0(y) = a0 + a3y + a6y

2 + a9y
3, P1(y) =

a1 + a4y + a7y
2 + a10y

3, P2(y) = a2 + a5y + a8y
2 + a11y

3. We first compute
y = x3, y2 and y3, then we evaluate P0(y) in three scalar multiplications a3y,
a6y

2, and a9y
3 and three additions, similarly for P1 and P2, and finally we

evaluate P (x) using

P (x) = P0(y) + xP1(y) + x2P2(y),

(here we might use Horner’s rule). In this example, we have a total of six
nonscalar multiplications: four to compute y and its powers, and two to
evaluate P (x).

Complexity of Rectangular Series Splitting

To evaluate a polynomial P (x) of degree d − 1 = jk − 1, rectangular series
splitting takes O(j+k) nonscalar multiplications — each costing O(M(n)) —

156 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

and O(jk) scalar multiplications. The scalar multiplications involve multi-
plication and/or division of a multiple-precision number by small integers.
Assume that these multiplications and/or divisions take time c(d)n each (see
Exercise 4.13 for a justification of this assumption). The function c(d) ac-
counts for the fact that the involved scalars (the coefficients aj or the ratios
aj+1/aj) have a size depending on the degree d of P (x). In practice we can
usually regard c(d) as constant.

Choosing j ∼ k ∼ d1/2 we get overall time

O(d1/2M(n) + dn · c(d)). (4.24)

If d is of the same order as the precision n of x, this is not an improvement
on the bound O(n1/2M(n)) that we obtained already by argument reduction
and power series evaluation (§4.4.2). However, we can do argument reduction
before applying rectangular series splitting. Assuming that c(n) = O(1) (see
Exercise 4.14 for a detailed analysis), the total complexity is:

T (n) = O
(n
d
M(n) + d1/2M(n) + dn

)
,

where the extra (n/d)M(n) term comes from argument reduction and/or
reconstruction. Which term dominates? There are two cases:

1. M(n)≫ n4/3. Here the minimum is obtained when the first two terms
— argument reduction/reconstruction and nonscalar multiplications —
are equal, i.e., for d ∼ n2/3, which yields T (n) = O(n1/3M(n)). This
case applies if we use classical or Karatsuba multiplication, since lg 3 >
4/3, and similarly for Toom-Cook 3-, 4-, 5-, or 6-way multiplication
(but not 7-way, since log7 13 < 4/3). In this case T (n)≫ n5/3.

2. M(n)≪ n4/3. Here the minimum is obtained when the first and the last
terms — argument reduction/reconstruction and scalar multiplications
— are equal. The optimal value of d is then

√
M(n), and we get

an improved bound Θ(n
√

M(n)) ≫ n3/2. We can not approach the
O(n1+ε) that is achievable with AGM-based methods (if applicable) –
see §4.8.

Modern Computer Arithmetic, §4.5 157

4.5 Asymptotic Expansions

Often it is necessary to use different methods to evaluate a special function
in different parts of its domain. For example, the exponential integral6

E1(x) =

∫ ∞

x

exp(−u)
u

du (4.25)

is defined for all x > 0. However, the power series

E1(x) + γ + ln x =
∞∑

j=1

(−1)j−1xj

j!j
(4.26)

is unsatisfactory as a means of evaluating E1(x) for large positive x, for the
reasons discussed in §4.4 in connection with the power series (4.22) for erf(x),
or the power series for exp(x) (x negative). For sufficiently large positive x
it is preferable to use

ex E1(x) =

k∑

j=1

(j − 1)!(−1)j−1

xj
+Rk(x), (4.27)

where

Rk(x) = k! (−1)k exp(x)

∫ ∞

x

exp(−u)
uk+1

du. (4.28)

Note that

|Rk(x)| <
k!

xk+1
,

so
lim

x→+∞
Rk(x) = 0,

but limk→∞Rk(x) does not exist. In other words, the series

∞∑

j=1

(j − 1)! (−1)j−1

xj

6The functions E1(x) and Ei(x) = PV
∫ x

−∞
(exp(t)/t) dt are both called “exponential

integrals”. Closely related is the “logarithmic integral” li(x) = Ei(lnx) = PV
∫ x

0 (1/ ln t) dt.
Here the integrals PV

∫
· · · should be interpreted as Cauchy principal values if there is a

singularity in the range of integration. The power series (4.26) is valid for x ∈ C if
| arg x| < π (see Exercise 4.16).

158 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

is divergent. In such cases we call this an asymptotic series and write

ex E1(x) ∼
∑

j>0

(j − 1)!(−1)j−1

xj
. (4.29)

Although they do not generally converge, asymptotic series are very useful.
Often (though not always!) the error is bounded by the last term taken in the
series (or by the first term omitted). Also, when the terms in the asymptotic
series alternate in sign, it can often be shown that the true value lies between
two consecutive approximations obtained by summing the series with (say)
k and k + 1 terms. For example, this is true for the series (4.29) above,
provided x is real and positive.

When x is large and positive, the relative error attainable by using (4.27)
with k = ⌊x⌋ is O(x1/2 exp(−x)), because

|Rk(k)| ≤ k!/kk+1 = O(k−1/2 exp(−k)) (4.30)

and the leading term on the right side of (4.27) is 1/x. Thus, the asymp-
totic series may be used to evaluate E1(x) to precision n whenever x >
n ln 2 + O(lnn). More precise estimates can be obtained by using a version
of Stirling’s approximation with error bounds, for example

(
k

e

)k√
2πk < k! <

(
k

e

)k√
2πk exp

(
1

12k

)
.

If x is too small for the asymptotic approximation to be sufficiently accurate,
we can avoid the problem of cancellation in the power series (4.26) by the
technique of Exercise 4.19. However, the asymptotic approximation is faster
and hence is preferable whenever it is sufficiently accurate.

Examples where asymptotic expansions are useful include the evaluation
of erfc(x), Γ(x), Bessel functions, etc. We discuss some of these below.

Asymptotic expansions often arise when the convergence of series is accel-
erated by the Euler-Maclaurin sum formula.7 For example, Euler’s constant

7 The Euler-Maclaurin sum formula is a way of expressing the difference between a sum
and an integral as an asymptotic expansion. For example, assuming that a ∈ Z, b ∈ Z,
a ≤ b, and f(x) satisfies certain conditions, one form of the formula is

∑

a≤k≤b

f(k)−
∫ b

a

f(x) dx ∼ f(a) + f(b)

2
+
∑

k≥1

B2k

(2k)!

(
f (2k−1)(b)− f (2k−1)(a)

)
.

Often we can let b → +∞ and omit the terms involving b on the right-hand-side. For
more information see §4.12.

Modern Computer Arithmetic, §4.5 159

γ is defined by
γ = lim

N→∞
(HN − lnN) , (4.31)

where HN =
∑

1≤j≤N 1/j is a harmonic number. However, Eqn. (4.31) con-
verges slowly, so to evaluate γ accurately we need to accelerate the conver-
gence. This can be done using the Euler-Maclaurin formula. The idea is to
split the sum HN into two parts:

HN = Hp−1 +

N∑

j=p

1

j
.

We approximate the second sum using the Euler-Maclaurin formula7 with
a = p, b = N , f(x) = 1/x, then let N → +∞. The result is

γ ∼ Hp − ln p+
∑

k≥1

B2k

2k
p−2k. (4.32)

If p and the number of terms in the asymptotic expansion are chosen judi-
ciously, this gives a good algorithm for computing γ (though not the best
algorithm: see §4.12 for a faster algorithm that uses properties of Bessel
functions).

Here is another example. The Riemann zeta-function ζ(s) is defined for
s ∈ C, ℜ(s) > 1, by

ζ(s) =

∞∑

j=1

j−s, (4.33)

and by analytic continuation for other s 6= 1. ζ(s) may be evaluated to any
desired precision if m and p are chosen large enough in the Euler-Maclaurin
formula

ζ(s) =

p−1∑

j=1

j−s +
p−s

2
+

p1−s

s− 1
+

m∑

k=1

Tk,p(s) + Em,p(s), (4.34)

where

Tk,p(s) =
B2k

(2k)!
p1−s−2k

2k−2∏

j=0

(s+ j), (4.35)

|Em,p(s)| < |Tm+1,p(s) (s+ 2m+ 1)/(σ + 2m+ 1)|, (4.36)

160 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

m ≥ 0, p ≥ 1, σ = ℜ(s) > −(2m+ 1), and the B2k are Bernoulli numbers.

In arbitrary-precision computations we must be able to compute as many
terms of an asymptotic expansion as are required to give the desired accuracy.
It is easy to see that, if m in (4.34) is bounded as the precision n goes to
∞, then p has to increase as an exponential function of n. To evaluate ζ(s)
from (4.34) to precision n in time polynomial in n, bothm and pmust tend to
infinity with n. Thus, the Bernoulli numbers B2, . . . , B2m can not be stored in
a table of fixed size,8 but must be computed when needed (see §4.7). For this
reason we can not use asymptotic expansions when the general form of the
coefficients is unknown or the coefficients are too difficult to evaluate. Often
there is a related expansion with known and relatively simple coefficients.
For example, the asymptotic expansion (4.38) for ln Γ(x) has coefficients
related to the Bernoulli numbers, like the expansion (4.34) for ζ(s), and thus
is simpler to implement than Stirling’s asymptotic expansion for Γ(x) (see
Exercise 4.42).

Consider the computation of the error function erf(x). As seen in §4.4, the
series (4.22) and (4.23) are not satisfactory for large |x|, since they require
Ω(x2) terms. For example, to evaluate erf(1000) with an accuracy of six
digits, Eqn. (4.22) requires at least 2 718 279 terms! Instead, we may use an
asymptotic expansion. The complementary error function erfc(x) = 1−erf(x)
satisfies

erfc(x) ∼ e−x2

x
√
π

k∑

j=0

(−1)j (2j)!
j!

(2x)−2j, (4.37)

with the error bounded in absolute value by the next term and of the same
sign. In the case x = 1000, the term for j = 1 of the sum equals −0.5×10−6;
thus e−x2

/(x
√
π) is an approximation to erfc(x) with an accuracy of six digits.

Because erfc(1000) ≈ 1.86 × 10−434 298 is very small, this gives an extremely
accurate approximation to erf(1000).

For a function like the error function where both a power series (at x = 0)
and an asymptotic expansion (at x = ∞) are available, we might prefer to
use the former or the latter, depending on the value of the argument and
on the desired precision. We study here in some detail the case of the error
function, since it is typical.

8In addition, we would have to store them as exact rationals, taking ∼ m2 lgm bits
of storage, since a floating-point representation would not be convenient unless the target
precision n were known in advance. See §4.7.2 and Exercise 4.37.

Modern Computer Arithmetic, §4.5 161

The sum in (4.37) is divergent, since its j-th term is ∼
√
2(j/ex2)j . We

need to show that the smallest term is O(2−n) in order to be able to deduce
an n-bit approximation to erfc(x). The terms decrease while j < x2 + 1/2,
so the minimum is obtained for j ≈ x2, and is of order e−x2

, thus we need
x >

√
n ln 2. For example, for n = 106 bits this yields x > 833. However,

since erfc(x) is small for large x, say erfc(x) ≈ 2−λ, we need only m = n− λ
correct bits of erfc(x) to get n correct bits of erf(x) = 1− erfc(x).

Consider x fixed and j varying in the terms in the sums (4.22) and (4.37).
For j < x2, x2j/j! is an increasing function of j, but (2j)!/(j!(4x2)j) is a de-
creasing function of j. In this region the terms in Eqn. (4.37) are decreasing.
Thus, comparing the series (4.22) and (4.37), we see that the latter should
always be used if it can give sufficient accuracy. Similarly, (4.37) should if
possible be used in preference to (4.23), as the magnitudes of corresponding
terms in (4.22) and in (4.23) are similar.

Algorithm 4.2 Erf

Input: positive floating-point number x, integer n
Output: an n-bit approximation to erf(x)
m← ⌈n− (x2 + ln x+ (ln π)/2)/(ln 2)⌉
if (m+ 1/2) ln(2) < x2 then

t← erfc(x) with the asymptotic expansion (4.37) and precision m
return 1− t (in precision n)

else if x < 1 then
compute erf(x) with the power series (4.22) in precision n

else
compute erf(x) with the power series (4.23) in precision n.

Algorithm Erf computes erf(x) for real positive x (for other real x, use
the fact that erf(x) is an odd function, so erf(−x) = − erf(x) and erf(0) = 0).
In Algorithm Erf, the number of terms needed if Eqn. (4.22) or Eqn. (4.23)
is used is approximately the unique positive root j0 (rounded up to the next
integer) of

j(ln j − 2 ln x− 1) = n ln 2,

so j0 > ex2. On the other hand, if Eqn. (4.37) is used, then the number
of terms k < x2 + 1/2 (since otherwise the terms start increasing). The
condition (m+ 1/2) ln(2) < x2 in the algorithm ensures that the asymptotic
expansion can give m-bit accuracy.

162 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Here is an example: for x = 800 and a precision of one million bits,
Equation (4.23) requires about j0 = 2 339 601 terms. Eqn. (4.37) tells us
that erfc(x) ≈ 2−923 335; thus we need only m = 76 665 bits of precision for
erfc(x); in this case Eqn. (4.37) requires only about k = 10 375 terms. Note
that using Eqn. (4.22) would be slower than using Eqn. (4.23), because we
would have to compute about the same number of terms, but with higher
precision, to compensate for cancellation. We recommend using Eqn. (4.22)
only if |x| is small enough that any cancellation is insignificant (for example,
if |x| < 1).

Another example, closer to the boundary: for x = 589, still with n = 106,
we have m = 499 489, which gives j0 = 1 497 924, and k = 325 092. For
somewhat smaller x (or larger n) it might be desirable to use the continued
fraction (4.40), see Exercise 4.31.

Occasionally an asymptotic expansion can be used to obtain arbitrarily
high precision. For example, consider the computation of ln Γ(x). For large
positive x, we can use Stirling’s asymptotic expansion

ln Γ(x) =

(
x− 1

2

)
ln x−x+ ln(2π)

2
+

m−1∑

k=1

B2k

2k(2k − 1)x2k−1
+Rm(x), (4.38)

where Rm(x) is less in absolute value than the first term neglected, that is

B2m

2m(2m− 1)x2m−1
,

and has the same sign.9 The ratio of successive terms tk and tk+1 of the sum
is

tk+1

tk
≈ −

(
k

πx

)2

,

so the terms start to increase in absolute value for (approximately) k > πx.
This gives a bound on the accuracy attainable, in fact

ln |Rm(x)| > −2πx ln(x) +O(x).

However, because Γ(x) satisfies the functional equation Γ(x+1) = xΓ(x), we
can take x′ = x+ δ for some sufficiently large δ ∈ N, evaluate ln Γ(x′) using
the asymptotic expansion, and then compute ln Γ(x) from the functional
equation. See Exercise 4.21.

9The asymptotic expansion is also valid for x ∈ C, | arg x| < π, x 6= 0, but the bound
on the error term Rm(x) in this case is more complicated. See for example [1, 6.1.42].

Modern Computer Arithmetic, §4.6 163

4.6 Continued Fractions

In §4.5 we considered the exponential integral E1(x). This can be computed
using the continued fraction

ex E1(x) =
1

x+
1

1 +
1

x+
2

1 +
2

x+
3

1 + · · ·

.

Writing continued fractions in this way takes a lot of space, so instead we
use the shorthand notation

ex E1(x) =
1

x+

1

1+

1

x+

2

1+

2

x+

3

1+
· · · · (4.39)

Another example is

erfc(x) =

(
e−x2

√
π

)
1

x+

1/2

x+

2/2

x+

3/2

x+

4/2

x+

5/2

x+
· · · · (4.40)

Formally, a continued fraction

f = b0 +
a1
b1+

a2
b2+

a3
b3+

· · · ∈ Ĉ

is defined by two sequences (aj)j∈N∗ and (bj)j∈N, where aj , bj ∈ C. Here

Ĉ = C ∪ {∞} is the set of extended complex numbers.10 The expression f is
defined to be limk→∞ fk, if the limit exists, where

fk = b0 +
a1
b1+

a2
b2+

a3
b3+

· · · ak
bk

(4.41)

is the finite continued fraction — called the k-th approximant — obtained by
truncating the infinite continued fraction after k quotients.

10Arithmetic operations on C are extended to Ĉ in the obvious way, for example 1/0 =
1 +∞ = 1×∞ =∞, 1/∞ = 0. Note that 0/0, 0×∞ and ∞±∞ are undefined.

164 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Sometimes continued fractions are preferable, for computational pur-
poses, to power series or asymptotic expansions. For example, Euler’s contin-
ued fraction (4.39) converges for all real x > 0, and is better for computation
of E1(x) than the power series (4.26) in the region where the power series
suffers from catastrophic cancellation but the asymptotic expansion (4.27) is
not sufficiently accurate. Convergence of (4.39) is slow if x is small, so (4.39)
is preferred for precision n evaluation of E1(x) only when x is in a certain
interval, say x ∈ (c1n, c2n), c1 ≈ 0.1, c2 = ln 2 ≈ 0.6931 (see Exercise 4.24).

Continued fractions may be evaluated by either forward or backward re-
currence relations. Consider the finite continued fraction

y =
a1
b1+

a2
b2+

a3
b3+

· · · ak
bk

. (4.42)

The backward recurrence is Rk = 1, Rk−1 = bk,

Rj = bj+1Rj+1 + aj+2Rj+2 (j = k − 2, . . . , 0), (4.43)

and y = a1R1/R0, with invariant

Rj

Rj−1
=

1

bj+

aj+1

bj+1+
· · · ak

bk
.

The forward recurrence is P0 = 0, P1 = a1, Q0 = 1, Q1 = b1,

Pj = bj Pj−1 + aj Pj−2

Qj = bj Qj−1 + aj Qj−2

}
(j = 2, . . . , k), (4.44)

and y = Pk/Qk (see Exercise 4.26).
The advantage of evaluating an infinite continued fraction such as (4.39)

via the forward recurrence is that the cutoff k need not be chosen in advance;
we can stop when |Dk| is sufficiently small, where

Dk =
Pk

Qk
− Pk−1

Qk−1

. (4.45)

The main disadvantage of the forward recurrence is that twice as many arith-
metic operations are required as for the backward recurrence with the same
value of k. Another disadvantage is that the forward recurrence may be less
numerically stable than the backward recurrence.

If we are working with variable-precision floating-point arithmetic which
is much more expensive than single-precision floating-point, then a useful

Modern Computer Arithmetic, §4.7 165

strategy is to use the forward recurrence with single-precision arithmetic
(scaled to avoid overflow/underflow) to estimate k, then use the backward
recurrence with variable-precision arithmetic. One trick is needed: to evalu-
ate Dk using scaled single-precision we use the recurrence

D1 = a1/b1,

Dj = −ajQj−2Dj−1/Qj (j = 2, 3, . . .)

}
(4.46)

which avoids the cancellation inherent in (4.45).
By analogy with the case of power series with decreasing terms that al-

ternate in sign, there is one case in which it is possible to give a simple
a posteriori bound for the error occurred in truncating a continued fraction.
Let f be a convergent continued fraction with approximants fk as in (4.41).
Then

Theorem 4.6.1 If aj > 0 and bj > 0 for all j ∈ N∗, then the sequence
(f2k)k∈N of even order approximants is strictly increasing, and the sequence
(f2k+1)k∈N of odd order approximants is strictly decreasing. Thus

f2k < f < f2k+1

and ∣∣∣∣f −
fm−1 + fm

2

∣∣∣∣ <
∣∣∣∣
fm − fm−1

2

∣∣∣∣
for all m ∈ N∗.

In general, if the conditions of Theorem 4.6.1 are not satisfied, then it
is difficult to give simple, sharp error bounds. Power series and asymptotic
series are usually much easier to analyse than continued fractions.

4.7 Recurrence Relations

The evaluation of special functions by continued fractions is a special case
of their evaluation by recurrence relations. To illustrate this, we consider
the Bessel functions of the first kind, Jν(x). Here ν and x can in general be
complex, but we restrict attention to the case ν ∈ Z, x ∈ R. The functions
Jν(x) can be defined in several ways, for example by the generating function
(elegant but only useful for ν ∈ Z):

exp

(
x

2

(
t− 1

t

))
=

+∞∑

ν=−∞
tνJν(x), (4.47)

166 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

or by the power series (also valid if ν /∈ Z):

Jν(x) =
(x
2

)ν ∞∑

j=0

(−x2/4)j

j! Γ(ν + j + 1)
. (4.48)

We also need Bessel functions of the second kind (sometimes called Neumann
functions or Weber functions) Yν(x), which may be defined by:

Yν(x) = lim
µ→ν

Jµ(x) cos(πµ)− J−µ(x)

sin(πµ)
. (4.49)

Both Jν(x) and Yν(x) are solutions of Bessel’s differential equation

x2y′′ + xy′ + (x2 − ν2)y = 0. (4.50)

4.7.1 Evaluation of Bessel Functions

The Bessel functions Jν(x) satisfy the recurrence relation

Jν−1(x) + Jν+1(x) =
2ν

x
Jν(x). (4.51)

Dividing both sides by Jν(x), we see that

Jν−1(x)

Jν(x)
=

2ν

x
− 1

/
Jν(x)

Jν+1(x)
,

which gives a continued fraction for the ratio Jν(x)/Jν−1(x) (ν ≥ 1):

Jν(x)

Jν−1(x)
=

1

2ν/x−
1

2(ν + 1)/x−
1

2(ν + 2)/x− · · · · (4.52)

However, (4.52) is not immediately useful for evaluating the Bessel functions
J0(x) or J1(x), as it only gives their ratio.

The recurrence (4.51) may be evaluated backwards by Miller’s algorithm.
The idea is to start at some sufficiently large index ν ′, take fν′+1 = 0, fν′ = 1,
and evaluate the recurrence

fν−1 + fν+1 =
2ν

x
fν (4.53)

Modern Computer Arithmetic, §4.7 167

backwards to obtain fν′−1, · · · , f0. However, (4.53) is the same recurrence as
(4.51), so we expect to obtain f0 ≈ cJ0(x) where c is some scale factor. We
can use the identity

J0(x) + 2

∞∑

ν=1

J2ν(x) = 1 (4.54)

to determine c.
To understand why Miller’s algorithm works, and why evaluation of the

recurrence (4.51) in the forward direction is numerically unstable for ν > x,
we observe that the recurrence (4.53) has two independent solutions: the
desired solution Jν(x), and an undesired solution Yν(x), where Yν(x) is a
Bessel function of the second kind, see Eqn. (4.49). The general solution of
the recurrence (4.53) is a linear combination of the special solutions Jν(x)
and Yν(x). Due to rounding errors, the computed solution will also be a linear
combination, say aJν(x)+ bYν(x). Since |Yν(x)| increases exponentially with
ν when ν > ex/2, but |Jν(x)| is bounded, the unwanted component will
increase exponentially if we use the recurrence in the forward direction, but
decrease if we use it in the backward direction.

More precisely, we have

Jν(x) ∼
1√
2πν

(ex
2ν

)ν
and Yν(x) ∼ −

√
2

πν

(
2ν

ex

)ν

(4.55)

as ν → +∞ with x fixed. Thus, when ν is large and greater than ex/2, Jν(x)
is small and |Yν(x)| is large.

Miller’s algorithm seems to be the most effective method in the region
where the power series (4.48) suffers from catastrophic cancellation but asymp-
totic expansions are not sufficiently accurate. For more on Miller’s algorithm,
see §4.12.

4.7.2 Evaluation of Bernoulli and Tangent numbers

In §4.5, Equations (4.35) and (4.38), the Bernoulli numbers B2k or scaled
Bernoulli numbers Ck = B2k/(2k)! were required. These constants can be
defined by the generating functions

∞∑

k=0

Bk
xk

k!
=

x

ex − 1
, (4.56)

168 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

∞∑

k=0

Ckx
2k =

x

ex − 1
+

x

2
=

x/2

tanh(x/2)
. (4.57)

Multiplying both sides of (4.56) or (4.57) by ex−1, and equating coefficients,
gives the recurrence relations

B0 = 1,
k∑

j=0

(
k + 1

j

)
Bj = 0 for k > 0, (4.58)

and
k∑

j=0

Cj

(2k + 1− 2j)!
=

1

2 (2k)!
. (4.59)

These recurrences, or slight variants with similar numerical properties, have
often been used to evaluate Bernoulli numbers.

In this chapter our philosophy is that the required precision is not known
in advance, so it is not possible to precompute the Bernoulli numbers and
store them in a table once and for all. Thus, we need a good algorithm for
computing them at runtime.

Unfortunately, forward evaluation of the recurrence (4.58), or the corre-
sponding recurrence (4.59) for the scaled Bernoulli numbers, is numerically
unstable: using precision n the relative error in the computed B2k or Ck is
of order 4k2−n: see Exercise 4.35.

Despite its numerical instability, use of (4.59) may give the Ck to accept-
able accuracy if they are only needed to generate coefficients in an Euler-
Maclaurin expansion whose successive terms diminish by at least a factor of
four (or if the Ck are computed using exact rational arithmetic). If the Ck are
required to precision n, then (4.59) should be used with sufficient guard dig-
its, or (better) a more stable recurrence should be used. If we multiply both
sides of (4.57) by sinh(x/2)/x and equate coefficients, we get the recurrence

k∑

j=0

Cj

(2k + 1− 2j)! 4k−j
=

1

(2k)! 4k
. (4.60)

If (4.60) is used to evaluate Ck, using precision n arithmetic, the relative
error is only O(k22−n). Thus, use of (4.60) gives a stable algorithm for eval-
uating the scaled Bernoulli numbers Ck (and hence, if desired, the Bernoulli
numbers).

Modern Computer Arithmetic, §4.7 169

An even better, and perfectly stable, way to compute Bernoulli numbers
is to exploit their relationship with the tangent numbers Tj , defined by

tanx =
∑

j≥1

Tj
x2j−1

(2j − 1)!
. (4.61)

The tangent numbers are positive integers and can be expressed in terms of
Bernoulli numbers:

Tj = (−1)j−122j
(
22j − 1

) B2j

2j
. (4.62)

Conversely, the Bernoulli numbers can be expressed in terms of tangent num-
bers:

Bj =

1 if j = 0,

−1/2 if j = 1,

(−1)j/2−1jTj/2/(4
j − 2j) if j > 0 is even,

0 otherwise.

Eqn. (4.62) shows that the odd primes in the denominator of the Bernoulli
number B2j must be divisors of 22j − 1. In fact, this is a consequence of
Fermat’s little theorem and the Von Staudt-Clausen theorem, which says
that the primes p dividing the denominator of B2j are precisely those for
which (p− 1)|2j (see §4.12).

We now derive a recurrence that can be used to compute tangent numbers,
using only integer arithmetic. For brevity write t = tanx and D = d/dx.
Then Dt = sec2 x = 1 + t2. It follows that D(tn) = ntn−1(1 + t2) for all
n ∈ N∗.

It is clear thatDnt is a polynomial in t, say Pn(t). For example, P0(t) = t,
P1(t) = 1 + t2, etc. Write Pn(t) =

∑
j≥0 pn,jt

j . From the recurrence Pn(t) =
DPn−1(t), and the formula for D(tn) just noted, we see that deg(Pn) = n+1
and ∑

j≥0

pn,jt
j =

∑

j≥0

jpn−1,jt
j−1(1 + t2),

so
pn,j = (j − 1)pn−1,j−1 + (j + 1)pn−1,j+1 (4.63)

for all n ∈ N∗. Using (4.63) it is straightforward to compute the coefficients
of the polynomials P1(t), P2(t), etc.

170 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Algorithm 4.3 TangentNumbers
Input: positive integer m
Output: Tangent numbers T1, . . . , Tm

T1 ← 1
for k from 2 to m do

Tk ← (k − 1)Tk−1

for k from 2 to m do
for j from k to m do

Tj ← (j − k)Tj−1 + (j − k + 2)Tj

return T1, T2, . . . , Tm.

Observe that, since tan x is an odd function of x, the polynomials P2k(t)
are odd, and the polynomials P2k+1(t) are even. Equivalently, pn,j = 0 if
n+ j is even.

We are interested in the tangent numbers Tk = P2k−1(0) = p2k−1,0. Using
the recurrence (4.63) but avoiding computation of the coefficients that are
known to vanish, we obtain Algorithm TangentNumbers for the in-place
computation of tangent numbers. Note that this algorithm uses only arith-
metic on non-negative integers. If implemented with single-precision integers,
there may be problems with overflow as the tangent numbers grow rapidly. If
implemented using floating-point arithmetic, it is numerically stable because
there is no cancellation. An analogous algorithm SecantNumbers is the
topic of Exercise 4.40.

The tangent numbers grow rapidly because the generating function tanx
has poles at x = ±π/2. Thus, we expect Tk to grow roughly like
(2k − 1)! (2/π)2k. More precisely,

Tk

(2k − 1)!
=

22k+1(1− 2−2k)ζ(2k)

π2k
, (4.64)

where ζ(s) is the usual Riemann zeta-function, and

(1− 2−s)ζ(s) = 1 + 3−s + 5−s + · · ·

is sometimes called the odd zeta-function.
The Bernoulli numbers also grow rapidly, but not quite as fast as the

tangent numbers, because the singularities of the generating function (4.56)
are further from the origin (at ±2iπ instead of ±π/2). It is well-known that

Modern Computer Arithmetic, §4.8 171

the Riemann zeta-function for even non-negative integer arguments can be
expressed in terms of Bernoulli numbers – the relation is

(−1)k−1 B2k

(2k)!
=

2ζ(2k)

(2π)2k
. (4.65)

Since ζ(2k) = 1 +O(4−k) as k → +∞, we see that

|B2k| ∼
2 (2k)!

(2π)2k
. (4.66)

It is easy to see that (4.64) and (4.65) are equivalent, in view of the rela-
tion (4.62).

An asymptotically fast way of computing Bernoulli numbers is the topic
of Exercise 4.41. For yet another way of computing Bernoulli numbers, using
very little space, see §4.10.

4.8 Arithmetic-Geometric Mean

The (theoretically) fastest known methods for very large precision n use the
arithmetic-geometric mean (AGM) iteration of Gauss and Legendre. The
AGM is another nonlinear recurrence, important enough to treat separately.
Its complexity is O(M(n) lnn); the implicit constant here can be quite large,
so other methods are better for small n.

Given (a0, b0), the AGM iteration is defined by

(aj+1, bj+1) =

(
aj + bj

2
,
√
ajbj

)
.

For simplicity we only consider real, positive starting values (a0, b0) here (for
complex starting values, see §§4.8.5, 4.12). The AGM iteration converges
quadratically to a limit which we denote by AGM(a0, b0).

The AGM is useful because:

1. it converges quadratically. Eventually the number of correct digits
doubles at each iteration, so only O(logn) iterations are required;

2. each iteration takes time O(M(n)) because the square root can be
computed in time O(M(n)) by Newton’s method (see §3.5 and §4.2.3);

172 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

3. if we take suitable starting values (a0, b0), the result AGM(a0, b0) can be
used to compute logarithms (directly) and other elementary functions
(less directly), as well as constants such as π and ln 2.

4.8.1 Elliptic Integrals

The theory of the AGM iteration is intimately linked to the theory of elliptic
integrals. The complete elliptic integral of the first kind is defined by

K(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

=

∫ 1

0

dt√
(1− t2)(1− k2t2)

, (4.67)

and the complete elliptic integral of the second kind is

E(k) =

∫ π/2

0

√
1− k2 sin2 θ dθ =

∫ 1

0

√
1− k2t2

1− t2
dt,

where k ∈ [0, 1] is called the modulus and k′ =
√
1− k2 is the complementary

modulus. It is traditional (though confusing as the prime does not denote
differentiation) to write K ′(k) for K(k′) and E ′(k) for E(k′).

The Connection With Elliptic Integrals. Gauss discovered that

1

AGM(1, k)
=

2

π
K ′(k). (4.68)

This identity can be used to compute the elliptic integral K rapidly via
the AGM iteration. We can also use it to compute logarithms. From the
definition (4.67), we see that K(k) has a series expansion that converges for
|k| < 1 (in fact K(k) = (π/2)F (1/2, 1/2; 1; k2) is a hypergeometric function).
For small k we have

K(k) =
π

2

(
1 +

k2

4
+O(k4)

)
. (4.69)

It can also be shown that

K ′(k) =
2

π
ln

(
4

k

)
K(k)− k2

4
+O(k4). (4.70)

Modern Computer Arithmetic, §4.8 173

4.8.2 First AGM Algorithm for the Logarithm

From the formulæ (4.68), (4.69) and (4.70), we easily get

π/2

AGM(1, k)
= ln

(
4

k

)(
1 +O(k2)

)
. (4.71)

Thus, if x = 4/k is large, we have

ln(x) =
π/2

AGM(1, 4/x)

(
1 +O

(
1

x2

))
.

If x ≥ 2n/2, we can compute ln(x) to precision n using the AGM iteration.
It takes about 2 lg(n) iterations to converge if x ∈ [2n/2, 2n].

Note that we need the constant π, which could be computed by using
our formula twice with slightly different arguments x1 and x2, then taking
differences to approximate (d ln(x)/dx)/π at x1 (see Exercise 4.44). More
efficient is to use the Brent-Salamin (or Gauss-Legendre) algorithm, which
is based on the AGM and the Legendre relation

EK ′ + E ′K −KK ′ =
π

2
. (4.72)

Argument Expansion. If x is not large enough, we can compute

ln(2ℓx) = ℓ ln 2 + ln x

by the AGM method (assuming the constant ln 2 is known). Alternatively,
if x > 1, we can square x enough times and compute

ln
(
x2ℓ
)
= 2ℓ ln(x).

This method with x = 2 gives a way of computing ln 2, assuming we already
know π.

The Error Term. The O(k2) error term in the formula (4.71) is a nuisance.
A rigorous bound is

∣∣∣∣
π/2

AGM(1, k)
− ln

(
4

k

)∣∣∣∣ ≤ 4k2(8− ln k) (4.73)

174 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

for all k ∈ (0, 1], and the bound can be sharpened to 0.37k2(2.4 − ln(k)) if
k ∈ (0, 0.5].

The error O(k2| ln k|) makes it difficult to accelerate convergence by using
a larger value of k (i.e., a value of x = 4/k smaller than 2n/2). There is an
exact formula which is much more elegant and avoids this problem. Before
giving this formula we need to define some theta functions and show how
they can be used to parameterise the AGM iteration.

4.8.3 Theta Functions

We need the theta functions θ2(q), θ3(q) and θ4(q), defined for |q| < 1 by:

θ2(q) =

+∞∑

n=−∞
q(n+1/2)2 = 2q1/4

+∞∑

n=0

qn(n+1), (4.74)

θ3(q) =
+∞∑

n=−∞
qn

2

= 1 + 2
+∞∑

n=1

qn
2

, (4.75)

θ4(q) = θ3(−q) = 1 + 2
+∞∑

n=1

(−1)nqn2

. (4.76)

Note that the defining power series are sparse so it is easy to compute θ2(q)
and θ3(q) for small q. Unfortunately, the rectangular splitting method of
§4.4.3 does not help to speed up the computation.

The asymptotically fastest methods to compute theta functions use the
AGM. However, we do not follow this trail because it would lead us in circles!
We want to use theta functions to give starting values for the AGM iteration.

Theta Function Identities. There are many classical identities involving
theta functions. Two that are of interest to us are:

θ23(q) + θ24(q)

2
= θ23(q

2) and θ3(q)θ4(q) = θ24(q
2).

The latter may be written as

√
θ23(q)θ

2
4(q) = θ24(q

2)

to show the connection with the AGM:

Modern Computer Arithmetic, §4.8 175

AGM(θ23(q), θ
2
4(q)) = AGM(θ23(q

2), θ24(q
2)) = · · ·

= AGM(θ23(q
2k), θ24(q

2k)) = · · · = 1

for any |q| < 1. (The limit is 1 because q2
k

converges to 0, thus both θ3 and
θ4 converge to 1.) Apart from scaling, the AGM iteration is parameterised
by (θ23(q

2k), θ24(q
2k)) for k = 0, 1, 2, . . .

The Scaling Factor. Since AGM(θ23(q), θ
2
4(q)) = 1, and AGM(λa, λb) =

λ ·AGM(a, b), scaling gives AGM(1, k′) = 1/θ23(q) if k
′ = θ24(q)/θ

2
3(q). Equiv-

alently, since θ42+θ44 = θ43 (Jacobi), k = θ22(q)/θ
2
3(q). However, we know (from

(4.68) with k → k′) that 1/AGM(1, k′) = 2K(k)/π, so

K(k) =
π

2
θ23(q). (4.77)

Thus, the theta functions are closely related to elliptic integrals. In the
literature q is usually called the nome associated with the modulus k.

From q to k and k to q. We saw that k = θ22(q)/θ
2
3(q), which gives k in

terms of q. There is also a nice inverse formula which gives q in terms of k:
q = exp(−πK ′(k)/K(k)), or equivalently

ln

(
1

q

)
=

πK ′(k)

K(k)
. (4.78)

Sasaki and Kanada’s Formula. Substituting (4.68) and (4.77) with
k = θ22(q)/θ

2
3(q) into (4.78) gives Sasaki and Kanada’s elegant formula:

ln

(
1

q

)
=

π

AGM(θ22(q), θ
2
3(q))

. (4.79)

This leads to the following algorithm to compute ln x.

4.8.4 Second AGM Algorithm for the Logarithm

Suppose x is large. Let q = 1/x, compute θ2(q
4) and θ3(q

4) from their
defining series (4.74) and (4.75), then compute AGM(θ22(q

4), θ23(q
4)). Sasaki

176 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

and Kanada’s formula (with q replaced by q4 to avoid the q1/4 term in the
definition of θ2(q)) gives

ln(x) =
π/4

AGM(θ22(q
4), θ23(q

4))
.

There is a trade-off between increasing x (by squaring or multiplication by
a power of 2, see the paragraph on “Argument Expansion” in §4.8.2), and
taking longer to compute θ2(q

4) and θ3(q
4) from their series. In practice it

seems good to increase x until q = 1/x is small enough that O(q36) terms are
negligible. Then we can use

θ2(q
4) = 2

(
q + q9 + q25 +O(q49)

)
,

θ3(q
4) = 1 + 2

(
q4 + q16 +O(q36)

)
.

We need x ≥ 2n/36 which is much better than the requirement x ≥ 2n/2 for
the first AGM algorithm. We save about four AGM iterations at the cost of
a few multiplications.

Implementation Notes. Since

AGM(θ22, θ
2
3) =

AGM(θ22 + θ23, 2θ2θ3)

2
,

we can avoid the first square root in the AGM iteration. Also, it only takes
two nonscalar multiplications to compute 2θ2θ3 and θ22 + θ23 from θ2 and θ3:
see Exercise 4.45. Another speedup is possible by trading the multiplications
for squares, see §4.12.

Drawbacks of the AGM. The AGM has three drawbacks:

1. the AGM iteration is not self-correcting, so we have to work with full
precision (plus any necessary guard digits) throughout. In contrast,
when using Newton’s method or evaluating power series, many of the
computations can be performed with reduced precision, which saves a
logn factor (this amounts to using a negative number of guard digits);

2. the AGM with real arguments gives ln(x) directly. To obtain exp(x) we
need to apply Newton’s method (§4.2.5 and Exercise 4.6). To evaluate

Modern Computer Arithmetic, §4.9 177

trigonometric functions such as sin(x), cos(x), arctan(x) we need to
work with complex arguments, which increases the constant hidden in
the “O” time bound. Alternatively, we can use Landen transformations
for incomplete elliptic integrals, but this gives even larger constants;

3. because it converges so fast, it is difficult to speed up the AGM. At
best we can save O(1) iterations (see however §4.12).

4.8.5 The Complex AGM

In some cases the asymptotically fastest algorithms require the use of complex
arithmetic to produce a real result. It would be nice to avoid this because
complex arithmetic is significantly slower than real arithmetic. Examples
where we seem to need complex arithmetic to get the asymptotically fastest
algorithms are:

1. arctan(x), arcsin(x), arccos(x) via the AGM, using, for example,

arctan(x) = ℑ(ln(1 + ix));

2. tan(x), sin(x), cos(x) using Newton’s method and the above, or

cos(x) + i sin(x) = exp(ix),

where the complex exponential is computed by Newton’s method from
the complex logarithm (see Eqn. (4.11)).

The theory that we outlined for the AGM iteration and AGM algorithms
for ln(z) can be extended without problems to complex z /∈ (−∞, 0], provided
we always choose the square root with positive real part.

A complex multiplication takes three real multiplications (using Karat-
suba’s trick), and a complex squaring takes two real multiplications. We can
do even better in the FFT domain, assuming that one multiplication of cost
M(n) is equivalent to three Fourier transforms. In this model a squaring costs
2M(n)/3. A complex multiplication (a+ ib)(c+ id) = (ac− bd) + i(ad+ bc)
requires four forward and two backward transforms, thus costs 2M(n). A
complex squaring (a+ ib)2 = (a+ b)(a− b)+ i(2ab) requires two forward and
two backward transforms, thus costs 4M(n)/3. Taking this into account, we
get the asymptotic upper bounds relative to the cost of one multiplication
given in Table 4.1 (0.666 should be interpreted as ∼ 2M(n)/3, and so on).
See §4.12 for details of the algorithms giving these constants.

178 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Operation real complex

squaring 0.666 1.333
multiplication 1.000 2.000
reciprocal 1.444 3.444
division 1.666 4.777
square root 1.333 5.333
AGM iteration 2.000 6.666
log via AGM 4.000 lgn 13.333 lgn

Table 4.1: Costs in the FFT domain

4.9 Binary Splitting

Since the asymptotically fastest algorithms for arctan, sin, cos, etc. have a
large constant hidden in their time bound O(M(n) logn) (see “Drawbacks of
the AGM”, §4.8.4), page 176), it is interesting to look for other algorithms
that may be competitive for a large range of precisions, even if not asymptot-
ically optimal. One such algorithm (or class of algorithms) is based on binary
splitting or the closely related FEE method (see §4.12). The time complexity
of these algorithms is usually

O((logn)αM(n))

for some constant α ≥ 1 depending on how fast the relevant power series
converges, and also on the multiplication algorithm (classical, Karatsuba or
quasi-linear).

The Idea. Suppose we want to compute arctan(x) for rational x = p/q,
where p and q are small integers and |x| ≤ 1/2. The Taylor series gives

arctan

(
p

q

)
≈

∑

0≤j≤n/2

(−1)jp2j+1

(2j + 1)q2j+1
.

The finite sum, if computed exactly, gives a rational approximation P/Q to
arctan(p/q), and

log |Q| = O(n logn).

Modern Computer Arithmetic, §4.9 179

(Note: the series for exp converges faster, so in this case we sum ∼ n/ lnn
terms and get log |Q| = O(n).)

The finite sum can be computed by the “divide and conquer” strategy:
sum the first half to get P1/Q1 say, and the second half to get P2/Q2, then

P

Q
=

P1

Q1
+

P2

Q2
=

P1Q2 + P2Q1

Q1Q2

.

The rationals P1/Q1 and P2/Q2 are computed by a recursive application of
the same method, hence the term “binary splitting”. If used with quadratic
multiplication, this way of computing P/Q does not help; however, fast mul-
tiplication speeds up the balanced products P1Q2, P2Q1, and Q1Q2.

Complexity. The overall time complexity is

O

⌈lg(n)⌉∑

k=1

2k M(2−kn logn)

 = O((logn)αM(n)), (4.80)

where α = 2 in the FFT range; in general α ≤ 2 (see Exercise 4.47).

We can save a little by working to precision n rather than n logn at the
top levels; but we still have α = 2 for quasi-linear multiplication.

In practice the multiplication algorithm would not be fixed but would
depend on the size of the integers being multiplied. The complexity would
depend on the algorithm(s) used at the top levels.

Repeated Application of the Idea. If x ∈ (0, 0.25) and we want to
compute arctan(x), we can approximate x by a rational p/q and compute
arctan(p/q) as a first approximation to arctan(x), say p/q ≤ x < (p + 1)/q.
Now, from (4.17),

tan(arctan(x)− arctan(p/q)) =
x− p/q

1 + px/q
,

so
arctan(x) = arctan(p/q) + arctan(δ),

where

δ =
x− p/q

1 + px/q
=

qx− p

q + px
.

180 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

We can apply the same idea to approximate arctan(δ), until eventually we get
a sufficiently accurate approximation to arctan(x). Note that |δ| < |x− p/q|
< 1/q, so it is easy to ensure that the process converges.

Complexity of Repeated Application. If we use a sequence of about
lg n rationals p1/q1, p2/q2, . . ., where

qi = 22
i

,

then the computation of each arctan(pi/qi) takes time O((logn)αM(n)), and
the overall time to compute arctan(x) is

O((logn)α+1M(n)).

Indeed, we have 0 ≤ pi < 22
i−1

, thus pi has at most 2i−1 bits, and pi/qi as a
rational has value O(2−2i−1

) and size O(2i). The exponent α + 1 is 2 or 3.
Although this is not asymptotically as fast as AGM-based algorithms, the
implicit constants for binary splitting are small and the idea is useful for
quite large n (at least 106 decimal places).

Generalisations. The idea of binary splitting can be generalised. For ex-
ample, the Chudnovsky brothers gave a “bit-burst” algorithm which applies
to fast evaluation of solutions of linear differential equations. This is de-
scribed in §4.9.2.

4.9.1 A Binary Splitting Algorithm for sin, cos

In [45, Theorem 6.2], Brent claims an O(M(n) log2 n) algorithm for exp x and
sin x, however the proof only covers the case of the exponential, and ends with
“the proof of (6.28) is similar”. He had in mind deducing sin x from a complex
computation of exp(ix) = cosx+ i sin x. Algorithm SinCos is a variation of
Brent’s algorithm for exp x that computes sin x and cosx simultaneously, in
a way that avoids computations with complex numbers. The simultaneous
computation of sin x and cosx might be useful, for example, to compute tanx
or a plane rotation through the angle x.

At step 2 of Algorithm SinCos, we have xj = yj + xj+1, thus sin xj =
sin yj cosxj+1+cos yj sin xj+1, and similarly for cosxj , explaining the formulæ
used at step 6. Step 5 uses a binary splitting algorithm similar to the one

Modern Computer Arithmetic, §4.9 181

Algorithm 4.4 SinCos

Input: floating-point 0 < x < 1/2, integer n
Output: an approximation of sin x and cosx with error O(2−n)
1: write x ≈∑k

i=0 pi · 2−2i+1

where 0 ≤ pi < 22
i

and k = ⌈lg n⌉ − 1

2: let xj =
∑k

i=j pi · 2−2i+1

, with xk+1 = 0, and yj = pj · 2−2j+1

3: (Sk+1, Ck+1)← (0, 1) ⊲ Sj is sin xj and Cj is cosxj

4: for j from k downto 0 do
5: compute sin yj and cos yj using binary splitting
6: Sj ← sin yj ·Cj+1+cos yj ·Sj+1, Cj ← cos yj ·Cj+1− sin yj ·Sj+1

7: return (S0, C0).

described above for arctan(p/q): yj is a small rational, or is small itself, so
that all needed powers do not exceed n bits in size. This algorithm has the
same complexity O(M(n) log2 n) as Brent’s algorithm for exp x.

4.9.2 The Bit-Burst Algorithm

The binary-splitting algorithms described above for arctan x, exp x, sin x
rely on a functional equation: tan(x+ y) = (tanx+ tan y)/(1− tanx tan y),
exp(x+ y) = exp(x) exp(y), sin(x+ y) = sin x cos y+sin y cosx. We describe
here a more general algorithm, known as the “bit-burst” algorithm, which
does not require such a functional equation. This algorithm applies to a class
of functions known as holonomic functions. Other names are differentiably
finite and D-finite.

A function f(x) is said to be holonomic iff it satisfies a linear homoge-
neous differential equation with polynomial coefficients in x. Equivalently,
the Taylor coefficients uk of f satisfy a linear homogeneous recurrence with
coefficients polynomial in k. The set of holonomic functions is closed under
the operations of addition and multiplication, but not necessarily under di-
vision. For example, the exp, ln, sin, cos functions are holonomic, but tan is
not.

An important subclass of holonomic functions is the hypergeometric func-
tions, whose Taylor coefficients satisfy a recurrence uk+1/uk = R(k), where
R(k) is a rational function of k (see §4.4). This matches the second defini-
tion above, because we can write it as uk+1Q(k) − ukP (k) = 0 if R(k) =
P (k)/Q(k). Holonomic functions are much more general than hypergeomet-

182 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

ric functions (see Exercise 4.48); in particular the ratio of two consecutive
terms in a hypergeometric series has size O(log k) (as a rational number),
but can be much larger for holonomic functions.

Theorem 4.9.1 If f is holonomic and has no singularities on a finite, closed
interval [A,B], where A < 0 < B and f(0) = 0, then f(x) can be com-
puted to an (absolute) accuracy of n bits, for any n-bit floating-point number
x ∈ (A,B), in time O(M(n) log3 n).

Notes: For a sharper result, see Exercise 4.49. The condition f(0) = 0 is
just a technical condition to simplify the proof of the theorem; f(0) can be
any value that can be computed to n bits in time O(M(n) log3 n).

Proof. Without loss of generality, we assume 0 ≤ x < 1 < B; the binary
expansion of x can then be written x = 0.b1b2 . . . bn. Define r1 = 0.b1,
r2 = 0.0b2b3, r3 = 0.000b4b5b6b7 (the same decomposition was already used
in Algorithm SinCos): r1 consists of the first bit of the binary expansion of
x, r2 consists of the next two bits, r3 the next four bits, and so on. We thus
have x = r1 + r2 + . . .+ rk where 2k−1 ≤ n < 2k.

Define xi = r1 + · · · + ri with x0 = 0. The idea of the algorithm is
to translate the Taylor series of f from xi to xi+1; since f is holonomic,
this reduces to translating the recurrence on the corresponding coefficients.
The condition that f has no singularity in [0, x] ⊂ [A,B] ensures that the
translated recurrence is well-defined. We define f0(t) = f(t), f1(t) = f0(r1 +
t), f2(t) = f1(r2 + t), . . . , fi(t) = fi−1(ri + t) for i ≤ k. We have fi(t) =
f(xi + t), and fk(t) = f(x + t) since xk = x. Thus we are looking for
fk(0) = f(x).

Let f ∗
i (t) = fi(t) − fi(0) be the non-constant part of the Taylor expan-

sion of fi. We have f ∗
i (ri+1) = fi(ri+1) − fi(0) = fi+1(0) − fi(0) because

fi+1(t) = fi(ri+1 + t). Thus:

f ∗
0 (r1) + · · ·+ f ∗

k−1(rk) = (f1(0)− f0(0)) + · · ·+ (fk(0)− fk−1(0))

= fk(0)− f0(0) = f(x)− f(0).

Since f(0) = 0, this gives:

f(x) =

k−1∑

i=0

f ∗
i (ri+1).

Modern Computer Arithmetic, §4.9 183

To conclude the proof, we will show that each term f ∗
i (ri+1) can be eval-

uated to n bits in time O(M(n) log2 n). The rational ri+1 has a numerator
of at most 2i bits, and

0 ≤ ri+1 < 21−2i.

Thus, to evaluate f ∗
i (ri+1) to n bits, n/2i + O(logn) terms of the Taylor

expansion of f ∗
i (t) are enough. We now use the fact that f is holonomic.

Assume f satisfies the following homogeneous linear11 differential equation
with polynomial coefficients:

cm(t)f
(m)(t) + · · ·+ c1(t)f

′(t) + c0(t)f(t) = 0.

Substituting xi + t for t, we obtain a differential equation for fi:

cm(xi + t)f
(m)
i (t) + · · ·+ c1(xi + t)f ′

i(t) + c0(xi + t)fi(t) = 0.

From this equation we deduce (see §4.12) a linear recurrence for the Taylor
coefficients of fi(t), of the same order as that for f(t). The coefficients in the
recurrence for fi(t) have O(2i) bits, since xi = r1 + · · · + ri has O(2i) bits.
It follows that the ℓ-th Taylor coefficient of fi(t) has size O(ℓ(2i + log ℓ)).
The ℓ log ℓ term comes from the polynomials in ℓ in the recurrence. Since
ℓ ≤ n/2i +O(logn), this is O(n logn).

However, we do not want to evaluate the ℓ-th Taylor coefficient uℓ of fi(t),
but the series

sℓ =

ℓ∑

j=1

ujr
j
i+1 ≈ f ∗

i (ri+1).

Noting that uℓ = (sℓ−sℓ−1)/r
ℓ
i+1, and substituting this value in the recurrence

for (uℓ), say of order d, we obtain a recurrence of order d+1 for (sℓ). Putting
this latter recurrence in matrix form Sℓ = MℓSℓ−1, where Sℓ is the vector
(sℓ, sℓ−1, . . . , sℓ−d), we obtain

Sℓ = MℓMℓ−1 · · ·Md+1Sd, (4.81)

where the matrix product MℓMℓ−1 · · ·Md+1 can be evaluated in time
O(M(n) log2 n) using binary splitting.

11If f satisfies a non-homogeneous differential equation, say
E(t, f(t), f ′(t), . . . , f (k)(t)) = b(t), where b(t) is polynomial in t, differentiating it yields
F (t, f(t), f ′(t), . . . , f (k+1)(t)) = b′(t), and b′(t)E(·)− b(t)F (·) is homogeneous.

184 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

We illustrate Theorem 4.9.1 with the arc-tangent function, which satisfies
the differential equation f ′(t)(1 + t2) = 1. This equation evaluates at xi + t
to f ′

i(t)(1 + (xi + t)2) = 1, where fi(t) = f(xi + t). This gives the recurrence

(1 + x2
i)ℓuℓ + 2xi(ℓ− 1)uℓ−1 + (ℓ− 2)uℓ−2 = 0

for the Taylor coefficients uℓ of fi. This recurrence translates to

(1 + x2
i)ℓvℓ + 2xiri+1(ℓ− 1)vℓ−1 + r2i+1(ℓ− 2)vℓ−2 = 0

for vℓ = uℓr
ℓ
i+1, and to

(1+x2
i)ℓ(sℓ− sℓ−1)+2xiri+1(ℓ−1)(sℓ−1− sℓ−2)+ r2i+1(ℓ−2)(sℓ−2− sℓ−3) = 0

for sℓ =
∑ℓ

j=1 vj . This recurrence of order 3 can be written in matrix form,
and Eqn. (4.81) enables one to efficiently compute sℓ ≈ fi(ri + 1) − fi(0)
using multiplication of 3× 3 matrices and fast integer multiplication.

4.10 Contour Integration

In this section we assume that facilities for arbitrary-precision complex arith-
metic are available. These can be built on top of an arbitrary-precision real
arithmetic package (see Chapters 3 and 5).

Let f(z) be holomorphic in the disc |z| < R, R > 1, and let the power
series for f be

f(z) =

∞∑

j=0

aj z
j . (4.82)

From Cauchy’s theorem [122, Ch. 7] we have

aj =
1

2πi

∫

C

f(z)

zj+1
dz, (4.83)

where C is the unit circle. The contour integral in (4.83) may be approxi-
mated numerically by sums

Sj,k =
1

k

k−1∑

m=0

f(e2πim/k)e−2πijm/k. (4.84)

Modern Computer Arithmetic, §4.11 185

Let C ′ be a circle with centre at the origin and radius ρ ∈ (1, R). From
Cauchy’s theorem, assuming that j < k, we have (see Exercise 4.50):

Sj,k − aj =
1

2πi

∫

C′

f(z)

(zk − 1)zj+1
dz = aj+k + aj+2k + · · · , (4.85)

so |Sj,k − aj | = O((R− δ)−(j+k)) as k →∞, for any δ > 0. For example, let

f(z) =
z

ez − 1
+

z

2
(4.86)

be the generating function for the scaled Bernoulli numbers as in (4.57), so
a2j = Cj = B2j/(2j)! and R = 2π (because of the poles at ±2πi). Then

S2j,k −
B2j

(2j)!
=

B2j+k

(2j + k)!
+

B2j+2k

(2j + 2k)!
+ · · · , (4.87)

so we can evaluate B2j with relative error O((2π)−k) by evaluating f(z) at k
points on the unit circle.

There is some cancellation when using (4.84) to evaluate S2j,k because
the terms in the sum are of order unity but the result is of order (2π)−2j.
Thus O(j) guard digits are needed. In the following we assume j = O(n).

If exp(−2πijm/k) is computed efficiently from exp(−2πi/k) in the obvi-
ous way, the time required to evaluateB2, . . . , B2j to precision n isO(jnM(n)),
and the space required is O(n). We assume here that we need all Bernoulli
numbers up to index 2j, but we do not need to store all of them simultane-
ously. This is the case if we are using the Bernoulli numbers as coefficients
in a sum such as (4.38).

The recurrence relation method of §4.7.2 is faster but requires space
Θ(jn). Thus, the method of contour integration has advantages if space
is critical.

For comments on other forms of numerical quadrature, see §4.12.

4.11 Exercises

Exercise 4.1 If A(x) =
∑

j≥0 ajx
j is a formal power series over R with a0 = 1,

show that ln(A(x)) can be computed with error O(xn) in time O(M(n)), where
M(n) is the time required to multiply two polynomials of degree n− 1. Assume a
reasonable smoothness condition on the growth of M(n) as a function of n. [Hint:
(d/dx) ln(A(x)) = A′(x)/A(x).] Does a similar result hold for n-bit numbers if x
is replaced by 1/2?

186 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Exercise 4.2 (Schönhage [198] and Schost) Assume one wants to compute
1/s(x) mod xn, for s(x) a power series. Design an algorithm using an odd-even
scheme (§1.3.5), and estimate its complexity in the FFT range.

Exercise 4.3 Suppose that g and h are sufficiently smooth functions satisfying
g(h(x)) = x on some interval. Let yj = h(xj). Show that the iteration

xj+1 = xj +
k−1∑

m=1

(y − yj)
m g(m)(yj)

m!

is a k-th order iteration that (under suitable conditions) will converge to x = g(y).
[Hint: generalise the argument leading to (4.16).]

Exercise 4.4 Design a Horner-like algorithm for evaluating a series
∑k

j=0 ajx
j in

the forward direction, while deciding dynamically where to stop. For the stopping
criterion, assume that the |aj | are monotonic decreasing and that |x| < 1/2. [Hint:
use y = 1/x.]

Exercise 4.5 Assume one wants n bits of expx for x of order 2j , with the repeated
use of the doubling formula (§4.3.1), and the naive method to evaluate power series.
What is the best reduced argument x/2k in terms of n and j? [Consider both cases
j ≥ 0 and j < 0.]

Exercise 4.6 Assuming one can compute an n-bit approximation to lnx in time
T (n), where n ≪ M(n) = o(T (n)), show how to compute an n-bit approxima-
tion to expx in time ∼ T (n). Assume that T (n) and M(n) satisfy reasonable
smoothness conditions.

Exercise 4.7 Care has to be taken to use enough guard digits when computing
exp(x) by argument reduction followed by the power series (4.21). If x is of order
unity and k steps of argument reduction are used to compute exp(x) via

exp(x) =
(
exp(x/2k)

)2k
,

show that about k bits of precision will be lost (so it is necessary to use about k
guard bits).

Exercise 4.8 Show that the problem analysed in Exercise 4.7 can be avoided if
we work with the function

expm1(x) = exp(x)− 1 =

∞∑

j=1

xj

j!

which satisfies the doubling formula expm1(2x) = expm1(x)(2 + expm1(x)).

Modern Computer Arithmetic, §4.11 187

Exercise 4.9 For x > −1, prove the reduction formula

log1p(x) = 2 log1p

(
x

1 +
√
1 + x

)

where the function log1p(x) is defined by log1p(x) = ln(1+x), as in §4.4.2. Explain
why it might be desirable to work with log1p instead of ln in order to avoid loss
of precision (in the argument reduction, rather than in the reconstruction as in
Exercise 4.7). Note however that argument reduction for log1p is more expensive
than that for expm1, because of the square root.

Exercise 4.10 Give a numerically stable way of computing sinh(x) using one
evaluation of expm1(|x|) and a small number of additional operations (compare
Eqn. (4.20)).

Exercise 4.11 (White) Show that exp(x) can be computed via sinh(x) using
the formula

exp(x) = sinh(x) +

√
1 + sinh2(x).

Since

sinh(x) =
ex − e−x

2
=
∑

k≥0

x2k+1

(2k + 1)!
,

this saves computing about half the terms in the power series for exp(x) at the
expense of one square root. How would you modify this method to preserve numer-
ical stability for negative arguments x? Can this idea be used for other functions
than exp(x)?

Exercise 4.12 Count precisely the number of nonscalar products necessary for
the two variants of rectangular series splitting (§4.4.3).

Exercise 4.13 A drawback of rectangular series splitting as presented in §4.4.3
is that the coefficients (akℓ+m in the classical splitting, or ajm+ℓ in the modular
splitting) involved in the scalar multiplications might become large. Indeed, they
are typically a product of factorials, and thus have size O(d log d). Assuming that
the ratios ai+1/ai are small rationals, propose an alternate way of evaluating P (x).

Exercise 4.14 Make explicit the cost of the slowly growing function c(d) (§4.4.3).

Exercise 4.15 Prove the remainder term (4.28) in the expansion (4.27) for E1(x).
[Hint: prove the result by induction on k, using integration by parts in the for-
mula (4.28).]

188 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Exercise 4.16 Show that we can avoid using Cauchy principal value integrals by
defining Ei(z) and E1(z) in terms of the entire function

Ein(z) =

∫ z

0

1− exp(−t)
t

dt =

∞∑

j=1

(−1)j−1zj

j! j
.

Exercise 4.17 Let E1(x) be defined by (4.25) for real x > 0. Using (4.27), show
that

1

x
− 1

x2
< ex E1(x) <

1

x
.

Exercise 4.18 In this exercise the series are purely formal, so ignore any questions
of convergence. Applications are given in Exercises 4.19–4.20.

Suppose that (aj)j∈N is a sequence with exponential generating function s(z) =∑∞
j=0 ajz

j/j!. Suppose that An =
∑n

j=0

(
n
j

)
aj, and let S(z) =

∑∞
j=0Ajz

j/j! be
the exponential generating function of the sequence (An)n∈N. Show that

S(z) = exp(z)s(z).

Exercise 4.19 The power series for Ein(z) given in Exercise 4.16 suffers from
catastrophic cancellation when z is large and positive (like the series for exp(−z)).
Use Exercise 4.18 to show that this problem can be avoided by using the power
series (where Hn denotes the n-th harmonic number)

ez Ein(z) =
∞∑

j=1

Hjz
j

j!
.

Exercise 4.20 Show that Eqn. (4.23) for erf(x) follows from Eqn. (4.22). [Hint:
this is similar to Exercise 4.19.]

Exercise 4.21 Give an algorithm to evaluate Γ(x) for real x ≥ 1/2, with guar-
anteed relative error O(2−n). Use the method sketched in §4.5 for ln Γ(x). What
can you say about the complexity of the algorithm?

Modern Computer Arithmetic, §4.11 189

Exercise 4.22 Extend your solution to Exercise 4.21 to give an algorithm to
evaluate 1/Γ(z) for z ∈ C, with guaranteed relative error O(2−n). Note: Γ(z) has
poles at zero and the negative integers (that is, for −z ∈ N), but we overcome this
difficulty by computing the entire function 1/Γ(z). Warning: |Γ(z)| can be very
small if ℑ(z) is large. This follows from Stirling’s asymptotic expansion. In the
particular case of z = iy on the imaginary axis we have

2 ln |Γ(iy)| = ln

(
π

y sinh(πy)

)
≈ −π|y|.

More generally,
|Γ(x+ iy)|2 ≈ 2π|y|2x−1 exp(−π|y|)

for x, y ∈ R and |y| large.

Exercise 4.23 The usual form (4.38) of Stirling’s approximation for ln(Γ(z)) in-
volves a divergent series. It is possible to give a version of Stirling’s approximation
where the series is convergent:

ln Γ(z) =

(
z − 1

2

)
ln z − z +

ln(2π)

2
+

∞∑

k=1

ck
(z + 1)(z + 2) · · · (z + k)

, (4.88)

where the constants ck can be expressed in terms of Stirling numbers of the first
kind, s(n, k), defined by the generating function

n∑

k=0

s(n, k)xk = x(x− 1) · · · (x− n+ 1).

In fact

ck =
1

2k

k∑

j=1

j|s(n, j)|
(j + 1)(j + 2)

.

The Stirling numbers s(n, k) can be computed easily from a three-term recurrence,
so this gives a feasible alternative to the usual form of Stirling’s approximation
with coefficients related to Bernoulli numbers.

Show, experimentally and/or theoretically, that the convergent form of Stir-
ling’s approximation is not an improvement over the usual form as used in Exer-
cise 4.21.

Exercise 4.24 Implement procedures to evaluate E1(x) to high precision for real
positive x, using (a) the power series (4.26), (b) the asymptotic expansion (4.27)
(if sufficiently accurate), (c) the method of Exercise 4.19, and (d) the continued
fraction (4.39) using the backward and forward recurrences as suggested in §4.6.
Determine empirically the regions where each method is the fastest.

190 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Exercise 4.25 Prove the backward recurrence (4.43).

Exercise 4.26 Prove the forward recurrence (4.44).
[Hint: let

yk(x) =
a1
b1+

· · · ak−1

bk−1+

ak
bk + x

.

Show, by induction on k ≥ 1, that

yk(x) =
Pk + Pk−1x

Qk +Qk−1x
.]

Exercise 4.27 For the forward recurrence (4.44), show that

(
Qk Qk−1

Pk Pk−1

)
=

(
b1 1
a1 0

)(
b2 1
a2 0

)
· · ·
(

bk 1
ak 0

)

holds for k > 0 (and for k = 0 if we define P−1, Q−1 appropriately).
Remark. This gives a way to use parallelism when evaluating continued fractions.

Exercise 4.28 For the forward recurrence (4.44), show that
∣∣∣∣
Qk Qk−1

Pk Pk−1

∣∣∣∣ = (−1)ka1a2 · · · ak.

Exercise 4.29 Prove the identity (4.46).

Exercise 4.30 Prove Theorem 4.6.1.

Exercise 4.31 Investigate using the continued fraction (4.40) for evaluating the
complementary error function erfc(x) or the error function erf(x) = 1 − erfc(x).
Is there a region where the continued fraction is preferable to any of the methods
used in Algorithm Erf of §4.6?

Exercise 4.32 Show that the continued fraction (4.41) can be evaluated in time
O(M(k) log k) if the aj and bj are bounded integers (or rational numbers with
bounded numerators and denominators). [Hint: use Exercise 4.27.]

Exercise 4.33 Instead of (4.54), a different normalisation condition

J0(x)
2 + 2

∞∑

ν=1

Jν(x)
2 = 1 (4.89)

could be used in Miller’s algorithm. Which of these normalisation conditions is
preferable?

Modern Computer Arithmetic, §4.11 191

Exercise 4.34 Consider the recurrence fν−1 + fν+1 = 2Kfν , where K > 0 is a
fixed real constant. We can expect the solution to this recurrence to give some
insight into the behaviour of the recurrence (4.53) in the region ν ≈ Kx. Assume
for simplicity that K 6= 1. Show that the general solution has the form

fν = Aλν +Bµν,

where λ and µ are the roots of the quadratic equation x2 − 2Kx + 1 = 0, and
A and B are constants determined by the initial conditions. Show that there are
two cases: if K < 1 then λ and µ are complex conjugates on the unit circle, so
|λ| = |µ| = 1; if K > 1 then there are two real roots satisfying λµ = 1.

Exercise 4.35 Prove (or give a plausibility argument for) the statements made
in §4.7 that: (a) if a recurrence based on (4.59) is used to evaluate the scaled
Bernoulli number Ck, using precision n arithmetic, then the relative error is of
order 4k2−n; and (b) if a recurrence based on (4.60) is used, then the relative error
is O(k22−n).

Exercise 4.36 Starting from the definition (4.56), prove Eqn. (4.57). Deduce the
relation (4.62) connecting tangent numbers and Bernoulli numbers.

Exercise 4.37 (a) Show that the number of bits required to represent the tangent
number Tk exactly is ∼2k lg k as k →∞. (b) Show that the same applies for the
exact representation of the Bernoulli number B2k as a rational number.

Exercise 4.38 Explain how the correctness of Algorithm TangentNumbers
(§4.7.2) follows from the recurrence (4.63).

Algorithm 4.5 SecantNumbers
Input: positive integer m
Output: Secant numbers S0, S1, . . . , Sm

S0 ← 1
for k from 1 to m do

Sk ← kSk−1

for k from 1 to m do
for j from k + 1 to m do

Sj ← (j − k)Sj−1 + (j − k + 1)Sj

return S0, S1, . . . , Sm.

192 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Exercise 4.39 Show that the complexity of computing the tangent numbers
T1, . . . , Tm by Algorithm TangentNumbers (§4.7.2) is O(m3 logm). Assume that
the multiplications of tangent numbers Tj by small integers take time O(log Tj).
[Hint: use the result of Exercise 4.37.]

Exercise 4.40 Verify that Algorithm SecantNumbers computes in-place the
Secant numbers Sk, defined by the generating function

∑

k≥0

Sk
x2k

(2k)!
= sec x =

1

cos x
,

in much the same way that Algorithm TangentNumbers (§4.7.2) computes the
Tangent numbers.

Exercise 4.41 (Harvey) The generating function (4.56) for Bernoulli numbers
can be written as

∑

k≥0

Bk
xk

k!
= 1

/
∑

k≥0

xk

(k + 1)!
,

and we can use an asymptotically fast algorithm to compute the first n+1 terms in
the reciprocal of the power series. This should be asymptotically faster than using
the recurrences given in §4.7.2. Give an algorithm using this idea to compute
the Bernoulli numbers B0, B1, . . . , Bn in time O(n2(log n)2+ε). Implement your
algorithm and see how large n needs to be for it to be faster than the algorithms
discussed in §4.7.2.

Algorithm 4.6 SeriesExponential

Input: positive integer m and real numbers a1, a2, . . . , am
Output: real numbers b0, b1, . . . , bm such that

b0 + b1x+ · · ·+ bmx
m = exp(a1x+ · · ·+ amx

m) +O(xm+1)
b0 ← 1
for k from 1 to m do

bk ←
(∑k

j=1 jajbk−j

)/
k

return b0, b1, . . . , bm.

Exercise 4.42 (a) Show that Algorithm SeriesExponential computes B(x) =
exp(A(x)) up to terms of order xm+1, where A(x) = a1x + a2x

2 + · · · + amxm

Modern Computer Arithmetic, §4.11 193

is input data and B(x) = b0 + b1x + · · · + bmxm is the output. [Hint: compare
Exercise 4.1.]

(b) Apply this to give an algorithm to compute the coefficients bk in Stirling’s
approximation for n! (or Γ(n+ 1)):

n! ∼
(n
e

) √
2πn

∑

k≥0

bk
nk

.

[Hint: we know the coefficients in Stirling’s approximation (4.38) for ln Γ(z) in
terms of Bernoulli numbers.]

(c) Is this likely to be useful for high-precision computation of Γ(x) for real
positive x?

Exercise 4.43 Deduce from Eqn. (4.69) and (4.70) an expansion of ln(4/k) with
error term O(k4 log(4/k)). Use any means to figure out an effective bound on the
O() term. Deduce an algorithm requiring x ≥ 2n/4 only to get n bits of lnx.

Exercise 4.44 Show how both π and ln 2 can be evaluated using Eqn. (4.71).

Exercise 4.45 In §4.8.4 we mentioned that 2θ2θ3 and θ22 + θ23 can be computed
using two nonscalar multiplications. For example, we could (A) compute u =
(θ2 + θ3)

2 and v = θ2θ3; then the desired values are 2v and u− 2v. Alternatively,
we could (B) compute u and w = (θ2− θ3)

2; then the desired values are (u±w)/2.
Which method (A) or (B) is preferable?

Exercise 4.46 Improve the constants in Table 4.1.

Exercise 4.47 Justify Eqn. (4.80) and give an upper bound on the constant α if
the multiplication algorithm satisfies M(n) = Θ(nc) for some c ∈ (1, 2].

Exercise 4.48 (Salvy) Is the function exp(x2) + x/(1 − x2) holonomic?

Exercise 4.49 (van der Hoeven, Mezzarobba) Improve to O(M(n) log2 n)
the complexity given in Theorem 4.9.1.

Exercise 4.50 If w = e2πi/k, show that

1

zk − 1
=

1

k

k−1∑

m=0

wm

z − wm
.

194 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Deduce that Sj,k, defined by Eqn. (4.84), satisfies

Sj,k =
1

2πi

∫

C′

zk−j−1

zk − 1
f(z) dz

for j < k, where the contour C ′ is as in §4.10. Deduce Eqn. (4.85).
Remark. Eqn. (4.85) illustrates the phenomenon of aliasing: observations at k
points can not distinguish between the Fourier coefficients aj , aj+k, aj+2k, etc.

Exercise 4.51 Show that the sum S2j,k of §4.10 can be computed with (essen-
tially) only about k/4 evaluations of f if k is even. Similarly, show that about k/2
evaluations of f suffice if k is odd. On the other hand, show that the error bound
O((2π)−k) following Eqn. (4.87) can be improved if k is odd.

4.12 Notes and References

One of the main references for special functions is the “Handbook of Mathematical
Functions” by Abramowitz and Stegun [1], which gives many useful results but no
proofs. A more recent book is that of Nico Temme [215], and a comprehensive
reference is Andrews et al. [4]. A large part of the content of this chapter comes
from [48], and was implemented in the MP package [47]. In the context of floating-
point computations, the “Handbook of Floating-Point Arithmetic” [57] is a useful
reference, especially Chapter 11.

The SRT algorithm for division is named after Sweeney, Robertson [190] and
Tocher [217]. Original papers on Booth recoding, SRT division, etc., are reprinted
in the book by Swartzlander [213]. SRT division is similar to non-restoring division,
but uses a lookup table based on the dividend and the divisor to determine each
quotient digit. The Intel Pentium fdiv bug was caused by an incorrectly initialised
lookup table.

Basic material on Newton’s method may be found in many references, for
example the books by Brent [41, Ch. 3], Householder [126] or Traub [219]. Some
details on the use of Newton’s method in modern processors can be found in [128].
The idea of first computing y−1/2, then multiplying by y to get y1/2 (§4.2.3) was
pushed further by Karp and Markstein [138], who perform this at the penultimate
iteration, and modify the last iteration of Newton’s method for y−1/2 to directly
get y1/2 (see §1.4.5 for an example of the Karp-Markstein trick for division). For
more on Newton’s method for power series, we refer to [43, 52, 56, 143, 151, 203].

Some good references on error analysis of floating-point algorithms are the
books by Higham [121] and Muller [175]. Older references include Wilkinson’s
classics [229, 230].

Modern Computer Arithmetic, §4.12 195

Regarding doubling versus tripling: in §4.3.4 we assumed that one multiplica-
tion and one squaring were required to apply the tripling formula (4.19). However,
one might use the form sinh(3x) = 3 sinh(x) + 4 sinh3(x), which requires only one
cubing. Assuming a cubing costs 50% more than a squaring — in the FFT range
— the ratio would be 1.5 log3 2 ≈ 0.946. Thus, if a specialised cubing routine is
available, tripling may sometimes be slightly faster than doubling.

For an example of a detailed error analysis of an unrestricted algorithm, see [69].

The idea of rectangular series splitting to evaluate a power series with O(
√
n)

nonscalar multiplications (§4.4.3) was first published in 1973 by Paterson and
Stockmeyer [183]. It was rediscovered in the context of multiple-precision evalua-
tion of elementary functions by Smith [205, §8.7] in 1991. Smith gave it the name
“concurrent series”. Smith proposed modular splitting of the series, but classical
splitting seems slightly better. Smith noticed that the simultaneous use of this
fast technique and argument reduction yields O(n1/3M(n)) algorithms. Earlier, in
1960, Estrin [92] had found a similar technique with n/2 nonscalar multiplications,
but O(log n) parallel complexity.

There are several variants of the Euler-Maclaurin sum formula, with and with-
out bounds on the remainder. See for example Abramowitz and Stegun [1, Ch. 23],
and Apostol [6].

Most of the asymptotic expansions that we have given in §4.5 may be found
in Abramowitz and Stegun [1]. For more background on asymptotic expansions
of special functions, see for example the books by de Bruijn [84], Olver [181] and
Wong [232]. We have omitted mention of many other useful asymptotic expansions,
for example all but a few of those for Bessel functions [226, 228].

Most of the continued fractions mentioned in §4.6 may be found in Abram-
owitz and Stegun [1]. The classical theory is given in the books by Khinchin [140]
and Wall [225]. Continued fractions are used in the manner described in §4.6 in
arbitrary-precision packages such as MP [47]. A good recent reference on various
aspects of continued fractions for the evaluation of special functions is the Handbook
of Continued Fractions for Special Functions [83]. In particular, Chapter 7 of
this book contains a discussion of error bounds. Our Theorem 4.6.1 is a trivial
modification of [83, Theorem 7.5.1]. The asymptotically fast algorithm suggested
in Exercise 4.32 was given by Schönhage [196].

A proof of a generalisation of (4.54) is given in [4, §4.9]. Miller’s algorithm is
due to J. C. P. Miller. It is described, for example, in [1, §9.12, §19.28] and [68,
§13.14]. An algorithm is given in [102].

A recurrence based on (4.60) was used to evaluate the scaled Bernoulli num-
bers Ck in the MP package following a suggestion of Christian Reinsch [48, §12].
Previously, the inferior recurrence (4.59) was widely used, for example in [141] and
in early versions of the MP package [47, §6.11]. The idea of using tangent numbers

196 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

is mentioned in [107, §6.5], where it is attributed to B. F. Logan. Our in-place
Algorithms TangentNumbers and SecantNumbers may be new (see Exer-
cises 4.38–4.40). Kaneko [135] describes an algorithm of Akiyama and Tanigawa
for computing Bernoulli numbers in a manner similar to “Pascal’s triangle”. How-
ever, it requires more arithmetic operations than Algorithm TangentNumbers.
Also, the Akiyama-Tanigawa algorithm is only recommended for exact rational
arithmetic, since it is numerically unstable if implemented in floating-point arith-
metic. For more on Bernoulli, Tangent and Secant numbers, and a connection with
Stirling numbers, see Chen [61] and Sloane [204, A027641, A000182, A000364].

The Von Staudt-Clausen theorem was proved independently by Karl von Staudt
and Thomas Clausen in 1840. It can be found in many references. If just a single
Bernoulli number of large index is required, then Harvey’s modular algorithm [117]
can be recommended.

Some references on the Arithmetic-Geometric Mean (AGM) are Brent [43, 46,
51], Salamin [193], the Borweins’ book [36], Arndt and Haenel [7]. An early ref-
erence, which includes some results that were rediscovered later, is the fascinating
report HAKMEM [15]. Bernstein [19] gives a survey of different AGM algorithms
for computing the logarithm. Eqn. (4.70) is given in Borwein & Borwein [36,
(1.3.10)], and the bound (4.73) is given in [36, p. 11, Exercise 4(c)]. The AGM
can be extended to complex starting values provided we take the correct branch
of the square root (the one with positive real part): see Borwein & Borwein [36,
pp. 15–16]. The use of the complex AGM is discussed in [88]. For theta function
identities, see [36, Chapter 2], and for a proof of (4.78), see [36, §2.3].

The use of the exact formula (4.79) to compute lnx was first suggested by
Sasaki and Kanada (see [36, (7.2.5)], but beware the typo). See [46] for Landen
transformations, and [43] for more efficient methods; note that the constants given
in those papers might be improved using faster square root algorithms (Chapter 3).

The constants in Table 4.1 are justified as follows. We assume we are in
the FFT domain, and one Fourier transform costs M(n)/3. The 13M(n)/9 ≈
1.444M(n) cost for a real reciprocal is from Harvey [116], and assumes M(n) ∼
3T (2n), where T (n) is the time to perform a Fourier transform of size n. For
the complex reciprocal 1/(v + iw) = (v − iw)/(v2 + w2), we compute v2 + w2

using two forward transforms and one backward transform, equivalent in cost to
M(n), then one real reciprocal to obtain say x = 1/(v2 + w2), then two real
multiplications to compute vx, wx, but take advantage of the fact that we already
know the forward transforms of v and w, and the transform of x only needs to
be computed once, so these two multiplications cost only M(n). Thus the total
cost is 31M(n)/9 ≈ 3.444M(n). The 1.666M(n) cost for real division is from [125,
Remark 6], and assumes M(n) ∼ 3T (2n) as above for the real reciprocal. For

Modern Computer Arithmetic, §4.12 197

complex division, say (t + iu)/(v + iw), we first compute the complex reciprocal
x + iy = 1/(v + iw), then perform a complex multiplication (t + iu)(x + iy),
but save the cost of two transforms by observing that the transforms of x and y
are known as a byproduct of the complex reciprocal algorithm. Thus the total
cost is (31/9 + 4/3)M(n) ≈ 4.777M(n). The 4M(n)/3 cost for the real square
root is from Harvey [116], and assumes M(n) ∼ 3T (2n) as above. The complex
square root uses Friedland’s algorithm [97]:

√
x+ iy = w + iy/(2w) where w =√

(|x|+ (x2 + y2)1/2)/2; as for the complex reciprocal, x2 + y2 costs M(n), then
we compute its square root in 4M(n)/3, the second square root in 4M(n)/3, and
the division y/w costs 1.666M(n), which gives a total of 5.333M(n).

The cost of one real AGM iteration is at most the sum of the multiplication
cost and of the square root cost, but since we typically perform several iterations
it is reasonable to assume that the input and output of the iteration includes the
transforms of the operands. The transform of a+b is obtained by linearity from the
transforms of a and b, so is essentially free. Thus we save one transform or M(n)/3
per iteration, giving a cost per iteration of 2M(n). (Another way to save M(n)/3
is to trade the multiplication for a squaring, as explained in [199, §8.2.5].) The
complex AGM is analogous: it costs the same as a complex multiplication (2M(n))
and a complex square root (5.333M(n)), but we can save two (real) transforms
per iteration (2M(n)/3), giving a net cost of 6.666M(n). Finally, the logarithm
via the AGM costs 2 lg(n) +O(1) AGM iterations.

We note that some of the constants in Table 4.1 may not be optimal. For
example, it may be possible to reduce the cost of reciprocal or square root (Harvey,
Sergeev). We leave this as a challenge to the reader (see Exercise 4.46). Note that
the constants for operations on power series may differ from the corresponding
constants for operations on integers/reals.

There is some disagreement in the literature about “binary splitting” and the
“FEE method” of E. A. Karatsuba [137].12 We choose the name “binary splitting”
because it is more descriptive, and let the reader call it the “FEE method” if he/she
prefers. Whatever its name, the idea is quite old, since in 1976 Brent [45, Theorem
6.2] gave a binary splitting algorithm to compute expx in time O(M(n)(log n)2).
The CLN library implements several functions with binary splitting [108], and is
thus quite efficient for precisions of a million bits or more.

The “bit-burst” algorithm was invented by David and Gregory Chudnovsky [65],
and our Theorem 4.9.1 is based on their work. Some references on holonomic func-

12It is quite common for the same idea to be discovered independently several times.
For example, Gauss and Legendre independently discovered the connection between the
arithmetic-geometric mean and elliptic integrals; Brent and Salamin independently dis-
covered an application of this to the computation of π, and related algorithms were known
to the authors of [15].

198 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

tions are J. Bernstein [25, 26], van der Hoeven [123] and Zeilberger [234]. See also
the Maple gfun package [194], which allows one, amongst other things, to deduce
the recurrence for the Taylor coefficients of f(x) from its differential equation.

There are several topics that are not covered in this chapter, but might have
been if we had more time and space. We mention some references here. A useful
resource is the website [144].

The Riemann zeta-function ζ(s) can be evaluated by the Euler-Maclaurin ex-
pansion (4.34)–(4.36), or by Borwein’s algorithm [38, 39], but neither of these
methods is efficient if ℑ(s) is large. On the critical line ℜ(s) = 1/2, the Riemann-
Siegel formula [99] is much faster and in practice sufficiently accurate, although
only an asymptotic expansion. If enough terms are taken the error seems to be
O(exp(−πt)) where t = ℑ(s): see Brent’s review [82] and Berry’s paper [28]. An
error analysis is given in [185]. The Riemann-Siegel coefficients may be defined by
a recurrence in terms of certain integers ρn that can be defined using Euler numbers
(see Sloane’s sequence A087617 [204]). Sloane calls this the Gabcke sequence but
Gabcke credits Lehmer [156] so perhaps it should be called the Lehmer-Gabcke
sequence. The sequence (ρn) occurs naturally in the asymptotic expansion of
ln(Γ(1/4 + it/2)). The non-obvious fact that the ρn are integers was proved by de
Reyna [85].

Borwein’s algorithm for ζ(s) can be generalised to cover functions such as the
polylogarithm and the Hurwitz zeta-function: see Veps̆tas [224].

To evaluate the Riemann zeta-function ζ(σ+ it) for fixed σ and many equally-
spaced points t, the fastest known algorithm is due to Andrew Odlyzko and Arnold
Schönhage [180]. It has been used by Odlyzko to compute blocks of zeros with
very large height t, see [178, 179]; also (with improvements) by Xavier Gourdon
to verify the Riemann Hypothesis for the first 1013 nontrivial zeros in the upper
half-plane, see [105]. The Odlyzko-Schönhage algorithm can be generalised for the
computation of other L-functions.

In §4.10 we briefly discussed the numerical approximation of contour integrals,
but we omitted any discussion of other forms of numerical quadrature, for exam-
ple Romberg quadrature, the tanh rule, the tanh-sinh rule, etc. Some references
are [11, 12, 13, 95, 173, 214], and [37, §7.4.3]. For further discussion of the con-
tour integration method, see [157]. For Romberg quadrature (which depends on
Richardson extrapolation), see [58, 189, 192]. For Clenshaw-Curtis and Gaussian
quadrature, see [67, 93, 220]. An example of the use of numerical quadrature to
evaluate Γ(x) is [32, p. 188]. This is an interesting alternative to the method based
on Stirling’s asymptotic expansion (4.5).

We have not discussed the computation of specific mathematical constants such
as π, γ (Euler’s constant), ζ(3), etc. π can be evaluated using π = 4arctan(1) and a
fast arctan computation (§4.9.2); or by the Gauss-Legendre algorithm (also known

Modern Computer Arithmetic, §4.12 199

as the Brent-Salamin algorithm), see [43, 46, 193]. This asymptotically fast algo-
rithm is based on the arithmetic-geometric mean and Legendre’s relation (4.72). A
recent record computation by Bellard [16] used a rapidly-converging series for 1/π
by the Chudnovsky brothers [64], combined with binary splitting. Its complexity
is O(M(n) log2 n) (theoretically worse than Gauss-Legendre’s O(M(n) log n), but
with a small constant factor). There are several popular books on π: we men-
tion Arndt and Haenel [7]. A more advanced book is the one by the Borwein
brothers [36].

For a clever implementation of binary splitting and its application to the fast
computation of constants such as π and ζ(3) — and more generally constants
defined by hypergeometric series — see Cheng, Hanrot, Thomé, Zima and Zim-
mermann [62, 63].

The computation of γ and its continued fraction is of interest because it is not
known whether γ is rational (though this is unlikely). The best algorithm for com-
puting γ appears to be the “Bessel function” algorithm of Brent and McMillan [54],
as modified by Papanikolaou and later Gourdon [106] to incorporate binary split-
ting. A very useful source of information on the evaluation of constants (including
π, e, γ, ln 2, ζ(3)) and certain functions (including Γ(z) and ζ(s)) is Gourdon and
Sebah’s web site [106].

A nice book on accurate numerical computations for a diverse set of “SIAM
100-Digit Challenge” problems is Bornemann, Laurie, Wagon and Waldvogel [32].
In particular, Appendix B of this book considers how to solve the problems to
10, 000-decimal digit accuracy (and succeeds in all cases but one).

Chapter 5

Implementations and Pointers

Here we present a non-exhaustive list of software packages
that (in most cases) the authors have tried, together with
some other useful pointers. Of course, we can not accept any
responsibility for bugs/errors/omissions in any of the software
or documentation mentioned here — caveat emptor!

Websites change. If any of the websites mentioned here disappear
in the future, you may be able to find the new site using a search
engine with appropriate keywords.

5.1 Software Tools

5.1.1 CLN

CLN (Class Library for Numbers, http://www.ginac.de/CLN/) is a library
for efficient computations with all kinds of numbers in arbitrary precision.
It was written by Bruno Haible, and is currently maintained by Richard
Kreckel. It is written in C++ and distributed under the GNU General Pub-
lic License (GPL). CLN provides some elementary and special functions, and
fast arithmetic on large numbers, in particular it implements Schönhage-
Strassen multiplication, and the binary splitting algorithm [108]. CLN can
be configured to use GMP low-level mpn routines, which improves its per-
formance.

http://www.ginac.de/CLN/

202 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

5.1.2 GNU MP (GMP)

The GNU MP library is the main reference for arbitrary-precision arith-
metic. It has been developed since 1991 by Torbjörn Granlund and several
other contributors. GNU MP (GMP for short) implements several of the
algorithms described in this book. In particular, we recommend reading the
“Algorithms” chapter of the GMP reference manual [104]. GMP is written
in C, is released under the GNU Lesser General Public License (LGPL), and
is available from http://gmplib.org.

GMP’s mpz class implements arbitrary-precision integers (corresponding
to Chapter 1), while the mpf class implements arbitrary-precision floating-
point numbers (corresponding to Chapter 3).1 The performance of GMP
comes mostly from its low-level mpn class, which is well designed and highly
optimized in assembly code for many architectures.

As of version 5.0.0, mpz implements different multiplication algorithms
(schoolbook, Karatsuba, Toom-Cook 3-way, 4-way, 6-way, 8-way, and FFT
using Schönhage-Strassen’s algorithm); its division routine implements Al-
gorithm RecursiveDivRem (§1.4.3) in the middle range, and beyond that
Newton’s method, with complexity O(M(n)), and so does its square root,
which implements Algorithm SqrtRem, since it relies on division. The New-
ton division first precomputes a reciprocal to precision n/2, and then per-
forms two steps of Barrett reduction to precision n/2: this is an integer
variant of Algorithm Divide. It also implements unbalanced multiplica-
tion, with Toom-Cook (3, 2), (4, 3), (5, 3), (4, 2), or (6, 3) [31]. Function
mpn ni invertappr, which is not in the public interface, implements Algo-
rithm ApproximateReciprocal (§3.4.1). GMP 5.0.0 does not implement
elementary or special functions (Chapter 4), nor does it provide modular
arithmetic with an invariant divisor in its public interface (Chapter 2). How-
ever, it contains a preliminary interface for Montgomery’s REDC algorithm.

MPIR is a “fork” of GMP, with a different license, and various other
differences that make some functions more efficient with GMP, and some with
MPIR; also, the difficulty of compiling under Microsoft operating systems
may vary between the forks. Of course, the developers of GMP and MPIR
are continually improving their code, so the situation is dynamic. For more
on MPIR, see http://www.mpir.org/.

1However, the authors of GMP recommend using MPFR (see §5.1.4) for new projects.

http://gmplib.org
http://www.mpir.org/

Modern Computer Arithmetic, §5.1 203

5.1.3 MPFQ

MPFQ is a software library developed by Pierrick Gaudry and Emmanuel
Thomé for manipulation of finite fields. What makes MPFQ different from
other modular arithmetic libraries is that the target finite field is given at
compile time, thus more specific optimizations can be done. The two main
targets of MPFQ are the Galois fields F2n and Fp with p prime. MPFQ is
available from http://www.mpfq.org/, and is distributed under the GNU
Lesser General Public License (LGPL).

5.1.4 MPFR

MPFR is a multiple-precision binary floating-point library, written in C,
based on the GNU MP library, and distributed under the GNU Lesser Gen-
eral Public License (LGPL). It extends the main ideas of the IEEE 754 stan-
dard to arbitrary-precision arithmetic, by providing correct rounding and
exceptions. MPFR implements the algorithms of Chapter 3 and most of
those of Chapter 4, including all mathematical functions defined by the ISO
C99 standard. These strong semantics are in most cases achieved with no
significant slowdown compared to other arbitrary-precision tools. For details
of the MPFR library, see http://www.mpfr.org and the paper [96].

5.1.5 Other Multiple-Precision Packages

Without attempting to be exhaustive, we briefly mention some of MPFR’s
predecessors, competitors, and extensions.

1. ARPREC is a package for multiple-precision floating-point arithmetic,
written by David Bailey et al. in C++/Fortran. The distribution
includes The Experimental Mathematician’s Toolkit which is an inter-
active high-precision arithmetic computing environment. ARPREC is
available from http://crd.lbl.gov/~dhbailey/mpdist/.

2. MP [47] is a package for multiple-precision floating-point arithmetic
and elementary and special function evaluation, written in Fortran77.
MP permits any small base β (subject to restrictions imposed by the
word-size), and implements several rounding modes, though correct
rounding-to-nearest is not guaranteed in all cases. MP is now obsolete,
and we recommend the use of a more modern package such as MPFR.

http://www.mpfq.org/
http://www.mpfr.org
http://crd.lbl.gov/~dhbailey/mpdist/

204 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

However, much of Chapter 4 was inspired by MP, and some of the
algorithms implemented in MP are not yet available in later packages,
so the source code and documentation may be of interest: see http://
rpbrent.com/pub/pub043.html.

3. MPC (http://www.multiprecision.org/) is a C library for arith-
metic using complex numbers with arbitrarily high precision and cor-
rect rounding, written by Andreas Enge, Philippe Théveny and Paul
Zimmermann [90]. MPC is built on and follows the same principles as
MPFR.

4. MPFI is a package for arbitrary-precision floating-point interval arith-
metic, based on MPFR. It can be useful to get rigorous error bounds
using interval arithmetic. See http://mpfi.gforge.inria.fr/, and
also §5.3.

5. Several other interesting/useful packages are listed under “Other Re-
lated Free Software” at the MPFR website http://www.mpfr.org/.

5.1.6 Computational Algebra Packages

There are several general-purpose computational algebra packages that in-
corporate high-precision or arbitrary-precision arithmetic. These include
Magma, Mathematica, Maple and Sage. Of these, Sage is free and open-
source; the others are either commercial or semi-commercial and not open-
source. The authors of this book have often used Magma, Maple and Sage
for prototyping and testing algorithms, since it is usually faster to develop an
algorithm in a high-level language (at least if one is familiar with it) than in
a low-level language like C, where one has to worry about many details. Of
course, if speed of execution is a concern, it may be worthwhile to translate
the high-level code into a low-level language, but the high-level code will be
useful for debugging the low-level code.

1. Magma (http://magma.maths.usyd.edu.au/magma/) was developed
and is supported by John Cannon’s group at the University of Syd-
ney. Its predecessor was Cayley, a package designed primarily for
computational group theory. However, Magma is a general-purpose
algebra package with logical syntax and clear semantics. It includes

http://rpbrent.com/pub/pub043.html
http://rpbrent.com/pub/pub043.html
http://www.multiprecision.org/
http://mpfi.gforge.inria.fr/
http://www.mpfr.org/
http://magma.maths.usyd.edu.au/magma/

Modern Computer Arithmetic, §5.1 205

arbitrary-precision arithmetic based on GMP, MPFR and MPC. Al-
though Magma is not open-source, it has excellent online documenta-
tion.

2. Maple (http://www.maplesoft.com) is a commercial package origi-
nally developed at the University of Waterloo, now by Waterloo Maple,
Inc. It uses GMP for its integer arithmetic (though not necessarily the
latest version of GMP, so in some cases calling GMP directly may be
significantly faster). Unlike most of the other software mentioned in
this chapter, Maple uses radix 10 for its floating-point arithmetic.

3. Mathematica is a commercial package produced by Stephen Wolfram’s
company Wolfram Research, Inc. In the past, public documentation
on the algorithms used internally by Mathematica was poor. However,
this situation may be improving. Mathematica now appears to use
GMP for its basic arithmetic. For information about Mathematica, see
http://www.wolfram.com/products/mathematica/.

4. NTL (http://www.shoup.net/ntl/) is a C++ library providing data
structures and algorithms for manipulating arbitrary-length integers,
as well as vectors, matrices, and polynomials over the integers and
over finite fields. For example, it is very efficient for operations on
polynomials over the finite field F2 (that is, GF(2)). NTL was written
by and is maintained by Victor Shoup.

5. PARI/GP (http://pari.math.u-bordeaux.fr/) is a computer alge-
bra system designed for fast computations in number theory, but also
able to handle matrices, polynomials, power series, algebraic numbers
etc. PARI is implemented as a C library, and GP is the scripting
language for an interactive shell giving access to the PARI functions.
Overall, PARI is a small and efficient package. It was originally devel-
oped in 1987 by Christian Batut, Dominique Bernardi, Henri Cohen
and Michel Olivier at Université Bordeaux I, and is now maintained by
Karim Belabas and many volunteers.

6. Sage (http://www.sagemath.org/) is a free, open-source mathemat-
ical software system. It combines the power of many existing open-
source packages with a common Python-based interface. According
to the Sage website, its mission is “Creating a viable free open-source

http://www.maplesoft.com
http://www.wolfram.com/products/mathematica/
http://www.shoup.net/ntl/
http://pari.math.u-bordeaux.fr/
http://www.sagemath.org/

206 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

alternative to Magma, Maple, Mathematica and Matlab”. Sage was
started by William Stein and is developed by a large team of volun-
teers. It uses MPIR, MPFR, MPC, MPFI, PARI, NTL, etc. Thus, it
is a large system, with many capabilities, but occupying a lot of space
and taking a long time to compile.

5.2 Mailing Lists

5.2.1 The BNIS Mailing List

The BNIS mailing list was created by Dan Bernstein for “Anything of inter-
est to implementors of large-integer arithmetic packages”. It has low traffic
(a few messages per year only). See http://cr.yp.to/lists.html to sub-
scribe. An archive of this list is available at http://www.nabble.com/cr.
yp.to---bnis-f846.html.

5.2.2 The GMP Lists

There are four mailing lists associated with GMP: gmp-bugs for bug reports;
gmp-announce for important announcements about GMP, in particular new
releases; gmp-discuss for general discussions about GMP; gmp-devel for
technical discussions between GMP developers. We recommend subscription
to gmp-announce (very low traffic), to gmp-discuss (medium to high traf-
fic), and to gmp-devel only if you are interested in the internals of GMP.
Information about these lists (including archives and how to subscribe) is
available from http://gmplib.org/mailman/listinfo/.

5.2.3 The MPFR List

There is only one mailing list for the MPFR library. See http://www.mpfr.
org to subscribe or search through the list archives.

5.3 On-line Documents

The NIST Digital Library of Mathematical Functions (DLMF) is an ambi-
tious project to completely rewrite Abramowitz and Stegun’s classic Hand-
book of Mathematical Functions [1]. It will be published in book form by

http://cr.yp.to/lists.html
http://www.nabble.com/cr.yp.to---bnis-f846.html
http://www.nabble.com/cr.yp.to---bnis-f846.html
http://gmplib.org/mailman/listinfo/
http://www.mpfr.org
http://www.mpfr.org

Modern Computer Arithmetic, §5.3 207

Cambridge University Press as well as online at http://dlmf.nist.gov/.
As of February 2010 the project is incomplete, but still very useful. For ex-
ample, it provides an extensive online bibliography with many hyperlinks at
http://dlmf.nist.gov/bib/.

The Wolfram Functions Site http://functions.wolfram.com/ contains
a lot of information about mathematical functions (definition, specific values,
general characteristics, representations as series, limits, integrals, continued
fractions, differential equations, transformations, and so on).

The Encyclopedia of Special Functions (ESF) is another nice web site,
whose originality is that all formulæ are automatically generated from very
few data that uniquely define the corresponding function in a general class
[164]. This encyclopedia is currently being reimplemented in the Dynamic
Dictionary of Mathematical Functions (DDMF); both are available from
http://algo.inria.fr/online.html.

A large amount of information about interval arithmetic (introduction,
software, languages, books, courses, applications) can be found on the Inter-
val Computations page http://www.cs.utep.edu/interval-comp/.

Mike Cowlishaw maintains an extensive bibliography of conversion to and
from decimal arithmetic at http://speleotrove.com/decimal/.

Useful if you want to identify an unknown real constant such as 1.414213 · · ·
is the Inverse Symbolic Calculator (ISC) by Simon Plouffe (building on earlier
work by the Borwein brothers) at http://oldweb.cecm.sfu.ca/projects/
ISC/.

Finally, an extremely useful site for all kinds of integer/rational sequences
is Neil Sloane’sOnline Encyclopaedia of Integer Sequences (OEIS) at http://
www.research.att.com/~njas/sequences/.

http://dlmf.nist.gov/
http://dlmf.nist.gov/bib/
http://functions.wolfram.com/
http://algo.inria.fr/online.html
http://www.cs.utep.edu/interval-comp/
http://speleotrove.com/decimal/
http://oldweb.cecm.sfu.ca/projects/ISC/
http://oldweb.cecm.sfu.ca/projects/ISC/
http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/

Bibliography

[1] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Func-
tions. Dover, 1973. [162, 194, 195, 206]

[2] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals
of Mathematics, 160:1–13, 2004. [49]

[3] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974. [49, 84]

[4] George E. Andrews, Richard Askey, and Ranjan Roy. Special Functions.
Cambridge University Press, 1999. [194, 195]

[5] ANSI/IEEE. IEEE standard for binary floating-point arithmetic, 2008. Re-
vision of IEEE 754-1985, approved on June 12, 2008 by IEEE Standards
Board. [130]

[6] Tom M. Apostol. An elementary view of Euler’s summation formula. The
American Mathematical Monthly, 106(5):409–418, 1999. [195]

[7] Jörg Arndt and Christoph Haenel. π Unleashed. Springer-Verlag, Berlin,
2001. [196, 199]

[8] Eric Bach. A note on square roots in finite fields. IEEE Transactions on
Information Theory, 36(6):1494–1498, 1990. [50]

[9] Eric Bach and Jeffrey O. Shallit. Algorithmic Number Theory, Volume 1:
Efficient Algorithms. MIT Press, 1996. [50]

[10] Paul Bachmann. Niedere Zahlentheorie, volume 1. Teubner, Leipzig, 1902.
Reprinted by Chelsea, New York, 1968. [50]

[11] David H. Bailey. Tanh-sinh high-precision quadrature. Manuscript, 3 pages,
Jan 2006: LBNL-60519. Available from http://crd.lbl.gov/~dhbailey/

dhbpapers/dhb-tanh-sinh.pdf, 2006. [198]

209

http://crd.lbl.gov/~dhbailey/dhbpapers/dhb-tanh-sinh.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/dhb-tanh-sinh.pdf

210 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

[12] David H. Bailey and Jonathan M. Borwein. High-precision numerical inte-
gration: progress and challenges. Manuscript, 19 pages, Jul. 2009: LBNL-
547E, 2009. http://crd.lbl.gov/~dhbailey/dhbpapers/hp-num-int.

pdf. [198]

[13] David H. Bailey, Karthik Jeyabalan, and Xiaoye S. Li. A comparison of three
high-precision quadrature schemes. Experimental Mathematics, 14(3):317–
329, 2005. [198]

[14] Paul Barrett. Implementing the Rivest Shamir and Adleman public key en-
cryption algorithm on a standard digital signal processor. In A. M. Odlyzko,
editor, Advances in Cryptology, Proceedings of Crypto’86, volume 263 of
Lecture Notes in Computer Science, pages 311–323. Springer-Verlag, 1987.
[83]

[15] Michael Beeler, Richard W. Gosper, and Rich Schroeppel. Hakmem. Memo
239, MIT Artificial Intelligence Laboratory, 1972. http://www.inwap.com/
pdp10/hbaker/hakmem/hakmem.html. [196, 197]

[16] Fabrice Bellard. Pi computation record. http://bellard.org/pi/

pi2700e9/announce.html, 2009. [199]

[17] Daniel J. Bernstein. Detecting perfect powers in essentially linear time.
Mathematics of Computation, 67:1253–1283, 1998. [49]

[18] Daniel J. Bernstein. Pippenger’s exponentiation algorithm. http://cr.yp.
to/papers.html, 2002. 21 pages. [84]

[19] Daniel J. Bernstein. Computing logarithm intervals with the arithmetic-
geometric-mean iteration. http://cr.yp.to/arith.html, 2003. 8 pages.
[196]

[20] Daniel J. Bernstein. Removing redundancy in high-precision Newton itera-
tion. http://cr.yp.to/fastnewton.html, 2004. 13 pages. [132]

[21] Daniel J. Bernstein. Scaled remainder trees. http://cr.yp.to/arith.html,
2004. 8 pages. [47]

[22] Daniel J. Bernstein. Fast multiplication and its applications. http://cr.

yp.to/arith.html, 2008. 60 pages. [84]

[23] Daniel J. Bernstein, Hendrik W. Lenstra, Jr., and Jonathan Pila. Detecting
perfect powers by factoring into coprimes. Mathematics of Computation,
76(257):385–388, 2007. [49]

http://crd.lbl.gov/~dhbailey/dhbpapers/hp-num-int.pdf
http://crd.lbl.gov/~dhbailey/dhbpapers/hp-num-int.pdf
http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html
http://www.inwap.com/pdp10/hbaker/hakmem/hakmem.html
http://bellard.org/pi/pi2700e9/announce.html
http://bellard.org/pi/pi2700e9/announce.html
http://cr.yp.to/papers.html
http://cr.yp.to/papers.html
http://cr.yp.to/arith.html
http://cr.yp.to/fastnewton.html
http://cr.yp.to/arith.html
http://cr.yp.to/arith.html
http://cr.yp.to/arith.html

Modern Computer Arithmetic 211

[24] Daniel J. Bernstein and Jonathan P. Sorenson. Modular exponentiation
via the explicit Chinese remainder theorem. Mathematics of Computation,
76(257):443–454, 2007. [83, 84]

[25] Joseph N. Bernstein. Modules over a ring of differential operators, study
of the fundamental solutions of equations with constant coefficients. Func-
tional Analysis and its Applications, 5(2): Russian original: 1–16, English
translation: 89–101, 1971. [198]

[26] Joseph N. Bernstein. The analytic continuation of generalized functions with
respect to a parameter. Functional Analysis and its Applications, 6(4): Rus-
sian original: 26–40, English translation: 273–285, 1972. [198]

[27] Robert Bernstein. Multiplication by integer constants. Software, Practice
and Experience, 16(7):641–652, 1986. [15]

[28] Michael V. Berry. The Riemann-Siegel expansion for the zeta function: high
orders and remainders. Proc. Roy. Soc. London, 450:439–462, 1995. [198]

[29] Yves Bertot, Nicolas Magaud, and Paul Zimmermann. A proof of GMP
square root. Journal of Automated Reasoning, 29:225–252, 2002. Special
Issue on Automating and Mechanising Mathematics: In honour of N.G. de
Bruijn. [49]

[30] Leo I. Bluestein. A linear filtering approach to the computation of the dis-
crete Fourier transform. Northeast Electronics Research and Engineering
Meeting Record, 10:218–219, 1968. [84]

[31] Marco Bodrato and Alberto Zanoni. Integer and polynomial multiplication:
towards optimal Toom-Cook matrices. In C. W. Brown, editor, Proceedings
of the 2007 International Symposium on Symbolic and Algebraic Computa-
tion (ISSAC’07), pages 17–24, Waterloo, Ontario, Canada, 2007. [48, 202]

[32] Folkmar Bornemann, Dirk Laurie, Stan Wagon, and Jörg Waldvogel. The
SIAM 100-Digit Challenge: A Study in High-Accuracy Numerical Comput-
ing. SIAM, 2004. [198, 199]

[33] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 1998. [48]

[34] Allan Borodin and Robert Moenck. Fast modular transforms. Journal of
Computer and System Sciences, 8(3):366–386, 1974. [84]

[35] Allan Borodin and Ian Munro. The Computational Complexity of Algebraic
and Numeric Problems. Elsevier Computer Science Library, 1975. [84]

212 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

[36] Jonathan M. Borwein and Peter B. Borwein. Pi and the AGM: A Study in
Analytic Number Theory and Computational Complexity. Wiley, 1998. [196,
199]

[37] Jonathan M. Borwein, Peter B. Borwein, and Roland Girgensohn. Experi-
mentation in Mathematics: Computational Paths to Discovery. A. K. Peters,
2004. [198]

[38] Jonathan M. Borwein, David M. Bradley, and Richard E. Crandall. Compu-
tational strategies for the Riemann zeta function. Journal of Computational
and Applied Mathematics, 121:247–296, 2000. [198]

[39] Peter B. Borwein. An efficient algorithm for the Riemann zeta function. in
Constructive, Experimental, and Nonlinear Analysis (Limoges, 1999), CMS
Conf. Proc. 27, Amer. Math. Soc., 2000. [198]

[40] Alin Bostan, Grégoire Lecerf, and Éric Schost. Tellegen’s principle into
practice. In J. R. Sendra, editor, Proceedings of the 2003 International Sym-
posium on Symbolic and Algebraic Computation (ISSAC’03), pages 37–44,
Philadelphia, PA, USA, 2003. [131]

[41] Richard P. Brent. Algorithms for Minimization without Derivatives.
Prentice-Hall, 1973. Reprinted by Dover, 2002. http://rpbrent.com/pub/
pub011.html. [194]

[42] Richard P. Brent. On the precision attainable with various floating-point
number systems. IEEE Transactions on Computers, C-22:601–607, 1973.
http://rpbrent.com/pub/pub017.html. [128, 130]

[43] Richard P. Brent. Multiple-precision zero-finding methods and the com-
plexity of elementary function evaluation. In J. F. Traub, editor, Analytic
Computational Complexity, pages 151–176, New York, 1975. Academic Press.
http://rpbrent.com/pub/pub028.html. [194, 196, 199]

[44] Richard P. Brent. Analysis of the binary Euclidean algorithm. In J. F. Traub,
editor, New Directions and Recent Results in Algorithms and Complexity,
pages 321–355. Academic Press, New York, 1976. http://rpbrent.com/

pub/pub037.html. Errata: see the online version. [49]

[45] Richard P. Brent. The complexity of multiple-precision arithmetic. In R. S.
Anderssen and R. P. Brent, editors, The Complexity of Computational Prob-
lem Solving, pages 126–165. University of Queensland Press, 1976. http://
rpbrent.com/pub/pub032.html. [180, 197]

http://rpbrent.com/pub/pub011.html
http://rpbrent.com/pub/pub011.html
http://rpbrent.com/pub/pub017.html
http://rpbrent.com/pub/pub028.html
http://rpbrent.com/pub/pub037.html
http://rpbrent.com/pub/pub037.html
http://rpbrent.com/pub/pub032.html
http://rpbrent.com/pub/pub032.html

Modern Computer Arithmetic 213

[46] Richard P. Brent. Fast multiple-precision evaluation of elementary func-
tions. Journal of the ACM, 23(2):242–251, 1976. http://rpbrent.com/

pub/pub034.html. [196, 199]

[47] Richard P. Brent. Algorithm 524: MP, a Fortran multiple-precision arith-
metic package. ACM Transactions on Mathematical Software, 4:71–81, 1978.
http://rpbrent.com/pub/pub043.html. [194, 195, 203]

[48] Richard P. Brent. Unrestricted algorithms for elementary and special func-
tions. In S. H. Lavington, editor, Information Processing, volume 80, pages
613–619, 1980. http://rpbrent.com/pub/pub052.html. [130, 194, 195]

[49] Richard P. Brent. An idealist’s view of semantics for integer and real types.
Australian Computer Science Communications, 4:130–140, 1982. http://

rpbrent.com/pub/pub069.html. [131]

[50] Richard P. Brent. Twenty years’ analysis of the binary Euclidean algorithm.
In J. Davies, A. W. Roscoe, and J. Woodcock, editors, Millennial Perspec-
tives in Computer Science, pages 41–53. Palgrave, New York, 2000. http://
rpbrent.com/pub/pub183.html. [49]

[51] Richard P. Brent. Fast algorithms for high-precision computation of ele-
mentary functions, 2006. Invited talk presented at the Real Numbers and
Computation Conference (RNC7), Nancy, France, July 2006. Available from
http://rpbrent.com/talks.html. [196]

[52] Richard P. Brent and Hsiang T. Kung. Fast algorithms for manipulating
formal power series. Journal of the ACM, 25(2):581–595, 1978. http://

rpbrent.com/pub/pub045.html. [194]

[53] Richard P. Brent and Hsiang T. Kung. Systolic VLSI arrays for linear-time
GCD computation. In F. Anceau and E. J. Aas, editors, VLSI 83, pages 145–
154. North Holland, Amsterdam, 1983. http://rpbrent.com/pub/pub082.
html. [49]

[54] Richard P. Brent and Edwin M. McMillan. Some new algorithms for high-
precision computation of Euler’s constant. Mathematics of Computation,
34(149):305–312, 1980. http://rpbrent.com/pub/pub049.html. [199]

[55] Richard P. Brent, Colin Percival, and Paul Zimmermann. Error bounds
on complex floating-point multiplication. Mathematics of Computation,
76(259):1469–1481, 2007. http://rpbrent.com/pub/pub221.html. [131]

http://rpbrent.com/pub/pub034.html
http://rpbrent.com/pub/pub034.html
http://rpbrent.com/pub/pub043.html
http://rpbrent.com/pub/pub052.html
http://rpbrent.com/pub/pub069.html
http://rpbrent.com/pub/pub069.html
http://rpbrent.com/pub/pub183.html
http://rpbrent.com/pub/pub183.html
http://rpbrent.com/talks.html
http://rpbrent.com/pub/pub045.html
http://rpbrent.com/pub/pub045.html
http://rpbrent.com/pub/pub082.html
http://rpbrent.com/pub/pub082.html
http://rpbrent.com/pub/pub049.html
http://rpbrent.com/pub/pub221.html

214 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

[56] Richard P. Brent and Joseph F. Traub. On the complexity of composition
and generalized composition of power series. SIAM J. on Computing, 9:54–
66, 1980. http://rpbrent.com/pub/pub050.html. [194]

[57] Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Vin-
cent Lefèvre, Guillaume Melquiond, Jean-Michel Muller, Nathalie Revol,
Damien Stehlé, and Serge Torres. Handbook of Floating-Point Arithmetic.
Birkhäuser, 2009. 572 pages. [194]

[58] Roland Bulirsch and Josef Stoer. Handbook Series Numerical Integration.
Numerical quadrature by extrapolation. Numerische Mathematik, 9:271–278,
1967. [198]

[59] Peter Bürgisser, Michael Clausen, and Mohammad A. Shokrollahi. Algebraic
Complexity Theory. Grundlehren der mathematischen Wissenschaften 315.
Springer, 1997. [45, 133]

[60] Christoph Burnikel and Joachim Ziegler. Fast recursive division. Research
Report MPI-I-98-1-022, MPI Saarbrücken, 1998. [49]

[61] Kwang-Wu Chen. Algorithms for Bernoulli numbers and Euler numbers.
Journal of Integer Sequences, 4, 2001. Article 01.1.6, 7 pp. [196]

[62] Howard Cheng, Guillaume Hanrot, Emmanuel Thomé, Eugene Zima, and
Paul Zimmermann. Time- and space-efficient evaluation of some hyperge-
ometric constants. In C. W. Brown, editor, Proceedings of the 2007 Inter-
national Symposium on Symbolic (ISSAC’2007), pages 85–91. ACM, 2007.
[199]

[63] Howard Cheng, Guillaume Hanrot, Emmanuel Thomé, Eugene Zima, and
Paul Zimmermann. Time- and space-efficient evaluation of some hyperge-
ometric constants. Research Report 6105, INRIA, Jan. 2007, 20 pp, 2007.
http://hal.inria.fr/inria-00126428. [199]

[64] David V. Chudnovsky and Gregory G. Chudnovsky. Approximations and
complex multiplication according to Ramanujan. In G. E. Andrews, B. C.
Berndt, and R. A. Rankin, editors, Ramanujan Revisited: Proceedings of the
Centenary Conference, pages 375–472. Academic Press, Boston, 1988. [199]

[65] David V. Chudnovsky and Gregory V. Chudnovsky. Computer algebra in
the service of mathematical physics and number theory. In Computers in
Mathematics (Stanford, CA, 1986), volume 125 of Lecture Notes in Pure and
Applied Mathematics, pages 109–232, New York, 1990. Dekker. [197]

http://rpbrent.com/pub/pub050.html
http://hal.inria.fr/inria-00126428

Modern Computer Arithmetic 215

[66] Jaewook Chung and M. Anwar Hasan. Asymmetric squaring formulae. In
P. Kornerup and J.-M. Muller, editors, Proceedings of the 18th IEEE Sympo-
sium on Computer Arithmetic (ARITH-18), pages 113–122. IEEE Computer
Society, 2007. [48]

[67] Charles W. Clenshaw and Alan R. Curtis. A method for numerical integra-
tion on an automatic computer. Numerische Mathematik, 2:197–205, 1960.
[198]

[68] Charles W. Clenshaw, Charles E. T. Goodwin, David W. Martin, Geoffrey F.
Miller, Frank W. J. Olver, and James H. Wilkinson. Modern Computing
Methods. Notes on Applied Science, No. 16. HMSO, second edition, 1961.
[195]

[69] Charles W. Clenshaw and Frank W. J. Olver. An unrestricted algorithm for
the exponential function. SIAM Journal on Numerical Analysis, 17:310–331,
1980. [130, 195]

[70] Charles W. Clenshaw and Frank W. J. Olver. Beyond floating point. Journal
of the ACM, 31(2):319–328, 1984. [130]

[71] William D. Clinger. How to read floating point numbers accurately. In Pro-
ceedings of the ACM SIGPLAN’90 Conference on Programming Language
Design and Implementation, pages 92–101, White Plains, NY, 1990. [132]

[72] William J. Cody, Jerome T. Coonen, David M. Gay, Kenton Hanson, David
Hough, William Kahan, Richard Karpinski, John Palmer, Frederic N. Ris,
and David Stevenson. A proposed radix- and word-length-independent stan-
dard for floating-point arithmetic. IEEE Micro, pages 86–100, 1984. [130]

[73] Henri Cohen. A Course in Computational Algebraic Number Theory. Grad-
uate Texts in Mathematics 138. Springer-Verlag, 1993. 534 pages. [49, 84]

[74] George E. Collins and Werner Krandick. Multiprecision floating point ad-
dition. In C. Traverso, editor, Proceedings of the 2000 International Sym-
posium on Symbolic and Algebraic Computation (ISSAC’00), pages 71–77.
ACM Press, 2000. [131]

[75] U.S. Department Of Commerce. Digital Signature Standard (DSS). Techni-
cal Report FIPS PUB 186-2, National Institute of Standards and Technology,
2000. 76 pages. [84]

[76] Stephen A. Cook. On the Minimum Computation Time of Functions. PhD
thesis, Harvard University, 1966. Chapter 3 available from http://cr.yp.

to/bib/1966/cook.html. [48]

http://cr.yp.to/bib/1966/cook.html
http://cr.yp.to/bib/1966/cook.html

216 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

[77] Marius Cornea, Cristina Anderson, John Harrison, Ping Tak Peter Tang,
Eric Schneider, and Charles Tsen. A software implementation of the IEEE
754R decimal floating-point arithmetic using the binary encoding format. In
Proceedings of the 18th IEEE Symposium on Computer Arithmetic (ARITH-
18), pages 29–37, 2007. [133]

[78] Marius A. Cornea-Hasegan, Roger A. Golliver, and Peter Markstein. Cor-
rectness proofs outline for Newton-Raphson based floating-point divide and
square root algorithms. In I. Koren and P. Kornerup, editors, Proceedings
of the 14th IEEE Symposium on Computer Arithmetic (ARITH-14), pages
96–105, Adelaide, 1999. [132]

[79] Richard E. Crandall. Projects in Scientific Computation. TELOS, The Elec-
tronic Library of Science, Santa Clara, California, 1994. [131]

[80] Richard E. Crandall. Topics in Advanced Scientific Computation. TELOS,
The Electronic Library of Science, Santa Clara, California, 1996. [108, 131]

[81] Richard E. Crandall and Carl Pomerance. Prime Numbers: A Computational
Perspective. Springer-Verlag, second edition, 2005. [48]

[82] Fred D. Crary and John B. Rosser. High precision coefficients related to the
zeta function. Reviewed in Mathematics of Computation, 31:803–804, 1977.
Review available from http://rpbrent.com/review01.html. [198]

[83] Annie Cuyt, Vigdis B. Petersen, Brigitte Verdonk, Haakon Waadeland, and
William B. Jones (with contributions by Franky Backeljauw and Catherine
Bonan-Hamada). Handbook of Continued Fractions for Special Functions.
Springer, 2008. xvi+431 pages. [195]

[84] Nicolaas G. de Bruijn. Asymptotic Methods in Analysis. North-Holland,
third edition, 1970 (reprinted by Dover, New York 1981). [195]

[85] Juan Arias de Reyna. Dynamical zeta functions and Kummer congruences.
Acta Arithmetica, 119(1):39–52, 2005. [198]

[86] Vassil S. Dimitrov, Graham A. Jullien, and William C. Miller. An algorithm
for modular exponentiation. Information Processing Letters, 66:155–159,
1998. [84]

[87] Brandon Dixon and Arjen K. Lenstra. Massively parallel elliptic curve fac-
toring. In Proceedings of Eurocrypt’92, volume 658 of Lecture Notes in Com-
puter Science, pages 183–193. Springer-Verlag, 1993. [48]

http://rpbrent.com/review01.html

Modern Computer Arithmetic 217

[88] Régis Dupont. Fast evaluation of modular functions using Newton iterations
and the AGM. Mathematics of Computation, 2010. In press, 2010. [196]

[89] Shawna M. Eikenberry and Jonathan P. Sorenson. Efficient algorithms for
computing the Jacobi symbol. Journal of Symbolic Computation, 26(4):509–
523, 1998. [50]

[90] Andreas Enge, Philippe Théveny, and Paul Zimmermann. MPC — A library
for multiprecision complex arithmetic with exact rounding. INRIA, 0.8.1
edition, 2009. http://mpc.multiprecision.org/. [204]

[91] Miloš D. Ercegovac and Jean-Michel Muller. Complex square root with
operand prescaling. The Journal of VLSI Signal Processing, 49(1):19–30,
2007. [133]

[92] Gerald Estrin. Organization of computer systems – the fixed plus variable
structure computer. In Proceedings of the Western Joint Computer Confer-
ence, pages 33–40, 1960. [195]

[93] Leopold Féjer. On the infinite sequences arising in the theories of harmonic
analysis, of interpolation, and of mechanical quadratures. Bulletin of the
American Mathematical Society, 39:521–534, 1933. [198]

[94] George E. Forsythe. Pitfalls in computation, or why a math book isn’t
enough. American Mathematical Monthly, 77:931–956, 1970. [150]

[95] Laurent Fousse. Intégration Numérique avec Erreur Bornée en Précision
Arbitraire. PhD thesis, University Henri Poincaré Nancy 1, 2006. [198]

[96] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and
Paul Zimmermann. MPFR: A multiple-precision binary floating-point li-
brary with correct rounding. ACM Transactions on Mathematical Software,
33(2):13:1–13:15, 2007. [203]

[97] Paul Friedland. Algorithm 312: Absolute value and square root of a complex
number. Communications of the ACM, 10(10):665, 1967. [197]

[98] Martin Fürer. Faster integer multiplication. In D. S. Johnson and U. Feige,
editors, Proceedings of the 39th Annual ACM Symposium on Theory of Com-
puting (STOC), San Diego, California, USA, pages 57–66. ACM, 2007. [84]

[99] Wolfgang Gabcke. Neue Herleitung und explizite Restabschätzung der
Riemann-Siegel-Formel. PhD thesis, Georg-August-Universität, Göttingen,
1979. Spanish translation available from Juan Arias de Reyna. [198]

http://mpc.multiprecision.org/

218 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

[100] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Alge-
bra. Cambridge University Press, Cambridge, 1999. http://www-math.

uni-paderborn.de/mca. [83]

[101] Carl F. Gauss. Untersuchungen über Höhere Arithmetik. Springer, Berlin,
1889. Reprinted by the American Mathematical Society, 2006. [50]

[102] Walter Gautschi. Algorithm 236: Bessel functions of the first kind. Com-
munications of the ACM, 7:479–480, 1964. [195]

[103] David M. Gay. Correctly rounded binary-decimal and decimal-binary con-
versions. Numerical Analysis Manuscript 90-10, AT&T Bell Laboratories,
1990. [132]

[104] GNU MP: The GNU Multiple Precision Arithmetic Library, 5.0.0 edition,
2010. http://gmplib.org/. [202]

[105] Xavier Gourdon. The 1013 first zeros of the Riemann zeta function, and zeros
computation at very large height. http://numbers.computation.free.fr/
Constants/Miscellaneous/zetazeros1e13-1e24.pdf, 2004. [198]

[106] Xavier Gourdon and Pascal Sebah. Numbers, constants and computation.
http://numbers.computation.free.fr/, 2010. [199]

[107] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics. Addison-Wesley, third edition, 1994. [196]

[108] Bruno Haible and Thomas Papanikolaou. Fast multiprecision evaluation of
series of rational numbers. In J. P. Buhler, editor, Proceedings of the 3rd
Algorithmic Number Theory Symposium (ANTS-III), volume 1423 of Lecture
Notes in Computer Science, pages 338–350. Springer-Verlag, 1998. [197, 201]

[109] Tom R. Halfhill. The truth behind the Pentium bug. Byte, 1995.
March 1995. Available from http://www2.informatik.uni-jena.de/

~nez/rechnerarithmetik_5/fdiv_bug/byte_art1.htm. [139]

[110] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to Ellip-
tic Curve Cryptography. Springer-Verlag, 2004. http://www.cacr.math.

uwaterloo.ca/ecc/. [84]

[111] Guillaume Hanrot, Michel Quercia, and Paul Zimmermann. The middle
product algorithm, I. Speeding up the division and square root of power
series. Applicable Algebra in Engineering, Communication and Computing,
14(6):415–438, 2004. [131]

http://www-math.uni-paderborn.de/mca
http://www-math.uni-paderborn.de/mca
http://gmplib.org/
http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf
http://numbers.computation.free.fr/Constants/Miscellaneous/zetazeros1e13-1e24.pdf
http://numbers.computation.free.fr/
http://www2.informatik.uni-jena.de/~nez/rechnerarithmetik_5/fdiv_bug/byte_art1.htm
http://www2.informatik.uni-jena.de/~nez/rechnerarithmetik_5/fdiv_bug/byte_art1.htm
http://www.cacr.math.uwaterloo.ca/ecc/
http://www.cacr.math.uwaterloo.ca/ecc/

Modern Computer Arithmetic 219

[112] Guillaume Hanrot and Paul Zimmermann. A long note on Mulders’ short
product. Journal of Symbolic Computation, 37:391–401, 2004. [48]

[113] Laszlo Hars. Long modular multiplication for cryptographic applications. In
CHES’04, volume 3156 of Lecture Notes in Computer Science, pages 44–61.
Springer-Verlag, 2004. [83]

[114] David Harvey. Faster polynomial multiplication via multipoint Kronecker
substitution. J. of Symbolic Computation, 44:1502–1510, 2009. [43, 48]

[115] David Harvey. The Karatsuba middle product for integers. http://cims.

nyu.edu/~harvey/mulmid/, 2009. Preprint. [132]

[116] David Harvey. Faster algorithms for the square root and reciprocal of power
series. Mathematics of Computation, 2010. In press, 2010. Available from
http://arxiv.org/abs/0910.1926. [132, 196, 197]

[117] David Harvey. A multimodular algorithm for computing Bernoulli numbers.
Mathematics of Computation, 2010. In press, 2010. Available from http://

arxiv.org/abs/0807.1347v2. [196]

[118] William Hasenplaugh, Gunnar Gaubatz, and Vinodh Gopal. Fast modu-
lar reduction. In Proceedings of the 18th IEEE Symposium on Computer
Arithmetic (ARITH-18), pages 225–229, Montpellier, France, 2007. IEEE
Computer Society Press. [83]

[119] Johan H̊astad. Tensor rank is NP-complete. Journal of Algorithms,
11(4):644–654, 1990. [45]

[120] John L. Hennessy, David A. Patterson, and David Goldberg. Computer
Architecture: A Quantitative Approach. Morgan Kaufmann, 1990. [130]

[121] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
second edition, 2002. [131, 194]

[122] Einar Hille. Analytic Function Theory, volume 1. Blaisdell, New York, 1959.
[184]

[123] Joris van der Hoeven. Fast evaluation of holonomic functions. Theoretical
Computer Science, 210:199–215, 1999. [198]

[124] Joris van der Hoeven. Relax, but don’t be too lazy. Journal of Symbolic Com-
putation, 34(6):479–542, 2002. Available from http://www.math.u-psud.

fr/~vdhoeven. [48, 82]

http://cims.nyu.edu/~harvey/mulmid/
http://cims.nyu.edu/~harvey/mulmid/
http://arxiv.org/abs/0910.1926
http://arxiv.org/abs/0807.1347v2
http://arxiv.org/abs/0807.1347v2
http://www.math.u-psud.fr/~vdhoeven
http://www.math.u-psud.fr/~vdhoeven

220 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

[125] Joris van der Hoeven. Newton’s method and FFT trading. Technical
Report 2006-17, University Paris-Sud, 2006. http://www.texmacs.org/

joris/fnewton/fnewton-abs.html. [132, 196]

[126] Alston S. Householder. The Numerical Treatment of a Single Nonlinear
Equation. McGraw-Hill, New York, 1970. [194]

[127] Thomas E. Hull. The use of controlled precision. In J. K. Reid, editor, The
Relationship Between Numerical Computation and Programming Languages,
pages 71–84. North Holland, 1982. [131]

[128] Intel. Division, square root and remainder algorithms for the
Intel(r) Itanium(tm) architecture, 2003. Application Note, avail-
able from ftp://download.intel.com/software/opensource/divsqrt.

pdf, 120 pages. [194]

[129] Cristina Iordache and David W. Matula. On infinitely precise rounding for
division, square root, reciprocal and square root reciprocal. In Proceedings
of the 14th IEEE Symposium on Computer Arithmetic (ARITH-14), pages
233–240. IEEE Computer Society, 1999. [131]

[130] Tudor Jebelean. An algorithm for exact division. Journal of Symbolic Com-
putation, 15:169–180, 1993. [49]

[131] Tudor Jebelean. A double-digit Lehmer-Euclid algorithm for finding the
GCD of long integers. Journal of Symbolic Computation, 19:145–157, 1995.
[49]

[132] Tudor Jebelean. Practical integer division with Karatsuba complexity. In
W. W. Küchlin, editor, Proceedings of International Symposium on Symbolic
and Algebraic Computation (ISSAC’97), pages 339–341, Maui, Hawaii, 1997.
[49]

[133] William M. Kahan. Idempotent binary → decimal → binary conver-
sion. http://www.cs.berkeley.edu/~wkahan/Math128/BinDecBin.pdf,
2002. 1 page. [133]

[134] Marcelo E. Kaihara and Naofumi Takagi. Bipartite modular multiplication
method. IEEE Transactions on Computers, 57(2):157–164, 2008. [83]

[135] Masanobu Kaneko. The Akiyama-Tanigawa algorithm for Bernoulli num-
bers. Journal of Integer Sequences, 3, 2000. Article 00.2.9, 6 pages. [196]

http://www.texmacs.org/joris/fnewton/fnewton-abs.html
http://www.texmacs.org/joris/fnewton/fnewton-abs.html
ftp://download.intel.com/software/opensource/divsqrt.pdf
ftp://download.intel.com/software/opensource/divsqrt.pdf
http://www.cs.berkeley.edu/~wkahan/Math128/BinDecBin.pdf

Modern Computer Arithmetic 221

[136] Anatolii A. Karatsuba and Yuri Ofman. Multiplication of multi-digit num-
bers on automata (in Russian). Doklady Akad. Nauk SSSR, 145(2):293–294,
1962. Translation in Soviet Physics-Doklady 7 (1963), 595–596. [48]

[137] Ekatherina A. Karatsuba. Fast evaluation of hypergeometric functions by
FEE. In N. Papamichael, St. Ruscheweyh, and E. B. Saff, editors, Pro-
ceedings of Computational Methods and Function Theory (CMFT’97), pages
303–314. World Scientific Publishing, 1999. [197]

[138] Alan H. Karp and Peter Markstein. High-precision division and square root.
ACM Trans. on Mathematical Software, 23(4):561–589, 1997. [49, 132, 194]

[139] Gurgen H. Khachatrian, Melsik K. Kuregian, Karen R. Ispiryan, and
James L. Massey. Fast multiplication of integers for public-key applications.
In S. Vaudenay and A. M. Youssef, editors, Proceedings of the 8th Annual
International Workshop Selected Areas in Cryptography (SAC 2001), volume
2259 of Lecture Notes in Computer Science, pages 245–254. Springer-Verlag,
2001. [43, 48]

[140] Aleksandr Y. Khinchin. Continued Fractions. Noordhoff, Groningen, third
edition, 1963. Translated by P. Wynn. Reprinted by Dover, New York, 1997.
[49, 195]

[141] Donald E. Knuth. Euler’s constant to 1271 places. Mathematics of Compu-
tation, 16:275–281, 1962. [195]

[142] Donald E. Knuth. The analysis of algorithms. In Actes du Congrès Inter-
national des Mathématiciens de 1970, volume 3, pages 269–274, Paris, 1971.
Gauthiers-Villars. [49]

[143] Donald E. Knuth. The Art of Computer Programming, volume 2 :
Seminumerical Algorithms. Addison-Wesley, third edition, 1998. http://

www-cs-staff.stanford.edu/~knuth/taocp.html. [xi, 17, 32, 48, 49, 131,
133, 194]

[144] Tom Koornwinder, Nico Temme, and Raimundas Vidunas. Algorith-
mic methods for special functions by computer algebra. http://staff.

science.uva.nl/~thk/specfun/compalg.html, 2010. [198]

[145] Werner Krandick and Tudor Jebelean. Bidirectional exact integer division.
Journal of Symbolic Computation, 21(4–6):441–456, 1996. [49]

[146] Werner Krandick and Jeremy R. Johnson. Efficient multiprecision floating
point multiplication with optimal directional rounding. In E. Swartzlander,

http://www-cs-staff.stanford.edu/~knuth/taocp.html
http://www-cs-staff.stanford.edu/~knuth/taocp.html
http://staff.science.uva.nl/~thk/specfun/compalg.html
http://staff.science.uva.nl/~thk/specfun/compalg.html

222 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

M. J. Irwin, and G. Jullien, editors, Proceedings of the 11th IEEE Symposium
on Computer Arithmetic (ARITH-11), pages 228–233, 1993. [131]

[147] Leopold Kronecker. Über die symmetrischen Functionen. Monatsberichte
der Königlich Preuβischen Akademie der Wissenschaften zu Berlin 1880
(Berlin: Verl. d. Kgl. Akad. d. Wiss., 1881), pages 936–948, 1880. [48]

[148] Leopold Kronecker. Grundzüge einer arithmetischen Theorie der algebrais-
chen Grössen. Druck und Verlag Von G. Reimer, Berlin, 1882. [48]

[149] Hirondo Kuki and William J. Cody. A statistical study of the accuracy of
floating-point number systems. Communications of the ACM, 16:223–230,
1973. [128]

[150] Ulrich W. Kulisch. Computer Arithmetic and Validity. Theory, Implementa-
tion, and Applications. Number 33 in Studies in Mathematics. de Gruyter,
2008. 410 pages. [133]

[151] Hsiang T. Kung. On computing reciprocals of power series. Numerische
Mathematik, 22:341–348, 1974. [194]

[152] Tomas Lang and Jean-Michel Muller. Bounds on runs of zeros and ones
for algebraic functions. In Proceedings of the 15th IEEE Symposium on
Computer Arithmetic (ARITH-15), pages 13–20. IEEE Computer Society,
2001. [131]

[153] Vincent Lefèvre. Multiplication by an integer constant. Research Report
RR-4192, INRIA, 2001. [48]

[154] Vincent Lefèvre. The generic multiple-precision floating-point addition with
exact rounding (as in the MPFR library). In Proceedings of the 6th Confer-
ence on Real Numbers and Computers, pages 135–145, Dagstuhl, Germany,
2004. [131]

[155] Derrick H. Lehmer. Euclid’s algorithm for large numbers. The American
Mathematical Monthly, 45(4):227–233, 1938. [49]

[156] Derrick H. Lehmer. Extended computation of the Riemann zeta-function.
Mathematika, 3:102–108, 1956. [198]

[157] James N. Lyness and Cleve B. Moler. Numerical differentiation of analytic
functions. SIAM Journal on Numerical Analysis, 4:20–2–210, 1967. [198]

Modern Computer Arithmetic 223

[158] Roman Maeder. Storage allocation for the Karatsuba integer multiplication
algorithm. In Proceedings of the International Symposium on Design and
Implementation of Symbolic Computation Systems (DISCO), volume 722 of
Lecture Notes in Computer Science, pages 59–65. Springer-Verlag, 1993. [44]

[159] Peter Markstein. Software division and square root using Goldschmidt’s
algorithms. In Ch. Frougny, V. Brattka, and N. Müller, editors, Proceedings
of the 6th Conference on Real Numbers and Computers (RNC’6), pages 146–
157, Schloss Dagstuhl, Germany, 2004. [132]

[160] Gérard Maze. Existence of a limiting distribution for the binary GCD algo-
rithm. Journal of Discrete Algorithms, 5:176–186, 2007. [49]

[161] Philip B. McLaughlin, Jr. New frameworks for Montgomery’s modular mul-
tiplication method. Mathematics of Computation, 73(246):899–906, 2004.
[83]

[162] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, 1997. Available from http://www.

cacr.math.uwaterloo.ca/hac/. [84]

[163] Valérie Ménissier-Morain. Arithmétique Exacte, Conception, Algorithmique
et Performances d’une Implémentation Informatique en Précision Arbi-
traire. PhD thesis, University of Paris 7, 1994. [130]

[164] Ludovic Meunier and Bruno Salvy. ESF: an automatically generated en-
cyclopedia of special functions. In J. R. Sendra, editor, Proceedings of the
2003 International Symposium on Symbolic and Algebraic Computation (IS-
SAC’03), pages 199–206, Philadelphia, PA, USA, 2003. [207]

[165] Preda Mihailescu. Fast convolutions meet Montgomery. Mathematics of
Computation, 77:1199–1221, 2008. [83]

[166] Yoshio Mikami. The Development of Mathematics in China and Japan.
Teubner, 1913. Reprinted by Martino Publishing, Eastford, CT, USA, 2004.
[49]

[167] Robert Moenck and Allan Borodin. Fast modular transforms via division.
In Proceedings of the 13th Annual IEEE Symposium on Switching and Au-
tomata Theory, pages 90–96, 1972. [49]

[168] Niels Möller. Notes on the complexity of CRT, 2007. Preprint. 8 pages. [84]

[169] Niels Möller. On Schönhage’s algorithm and subquadratic integer GCD com-
putation. Mathematics of Computation, 77(261):589–607, 2008. [49]

http://www.cacr.math.uwaterloo.ca/hac/
http://www.cacr.math.uwaterloo.ca/hac/

224 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

[170] Peter L. Montgomery. Modular multiplication without trial division. Math-
ematics of Computation, 44(170):519–521, 1985. [83]

[171] Peter L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of Computation, 48(177):243–264, 1987. [84]

[172] Peter L. Montgomery. Personal communication to Torbjörn Granlund, 2001.
[45]

[173] Masatake Mori. Discovery of the double exponential transformation and
its developments. Publications of RIMS, Kyoto University, 41(4):897–935,
2005. [198]

[174] Thom Mulders. On short multiplications and divisions. Applicable Algebra
in Engineering, Communication and Computing, 11(1):69–88, 2000. [128,
131]

[175] Jean-Michel Muller. Elementary Functions. Algorithms and Implementation.
Birkhäuser, 2006. Second edition. 265 pages. [131, 132, 194]

[176] Thomas R. Nicely. Enumeration to 1014 of the twin primes and Brun’s
constant. Virginia Journal of Science, 46(3):195–204, 1995. http://www.

trnicely.net/twins/twins.html. Review at http://wwwmaths.anu.edu.
au/~brent/reviews.html. [139]

[177] Henri J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms.
Springer-Verlag, second edition, 1982. [84]

[178] Andrew M. Odlyzko. The 1020-th zero of the Riemann zeta function
and 175 million of its neighbors. http://www.dtc.umn.edu/~odlyzko/

unpublished/, 1992. [198]

[179] Andrew M. Odlyzko. The 1022-nd zero of the Riemann zeta function. In
M. van Frankenhuysen and M. L. Lapidus, editors, Dynamical, Spectral, and
Arithmetic Zeta Functions, number 290 in American Math. Soc., Contem-
porary Math. series, pages 139–144, 2001. [198]

[180] Andrew M. Odlyzko and Arnold Schönhage. Fast algorithms for multiple
evaluations of the zeta-function. Trans. Amer. Math. Soc., 309(2):797–809,
1988. [198]

[181] Frank W. J. Olver. Asymptotics and Special Functions. Academic Press,
1974. Reprinted by A. K. Peters, 1997. [195]

http://www.trnicely.net/twins/twins.html
http://www.trnicely.net/twins/twins.html
http://wwwmaths.anu.edu.au/~brent/reviews.html
http://wwwmaths.anu.edu.au/~brent/reviews.html
http://www.dtc.umn.edu/~odlyzko/unpublished/
http://www.dtc.umn.edu/~odlyzko/unpublished/

Modern Computer Arithmetic 225

[182] Victor Pan. How to Multiply Matrices Faster, volume 179 of Lecture Notes
in Computer Science. Springer-Verlag, 1984. [131]

[183] Michael S. Paterson and Larry J. Stockmeyer. On the number of nonscalar
multiplications necessary to evaluate polynomials. SIAM Journal on Com-
puting, 2(1):60–66, 1973. [195]

[184] Colin Percival. Rapid multiplication modulo the sum and difference of highly
composite numbers. Mathematics of Computation, 72(241):387–395, 2003.
[84, 131]

[185] Yves-F. S. Pétermann and Jean-Luc Rémy. On the Cohen-Olivier algorithm
for computing ζ(s): error analysis in the real case for an arbitrary precision.
Advances in Applied Mathematics, 38:54–70, 2007. [198]

[186] John M. Pollard. The fast Fourier transform in a finite field. Mathematics
of Computation, 25(114):365–374, 1971. [84]

[187] Douglas M. Priest. Algorithms for arbitrary precision floating point arith-
metic. In P. Kornerup and D. Matula, editors, Proceedings of the 10th IEEE
Symposium on Computer Arithmetic (ARITH-10), pages 132–144, Grenoble,
France, 1991. IEEE Computer Society Press. [131]

[188] Charles M. Rader. Discrete Fourier transforms when the number of data
samples is prime. Proceedings IEEE, 56:1107–1108, 1968. [84]

[189] Lewis F. Richardson and John A. Gaunt. The deferred approach to the
limit. Philosophical Transactions of the Royal Society of London, Series A,
226:299–361, 1927. [198]

[190] James E. Robertson. A new class of digital division methods. IRE Transac-
tions on Electronic Computers, EC–7(3):218–222, 1958. [194]

[191] Daniel S. Roche. Space- and time-efficient polynomial multiplication. In J. P.
May, editor, Proceedings of the 2009 International Symposium on Symbolic
and Algebraic Computation (ISSAC’09), pages 295–302, Seoul, Korea, 2009.
[44]

[192] Werner Romberg. Vereinfachte numerische Integration. Det Kongelige
Norske Videnskabers Selskab Forhandlinger (Tronheim), 28(7):30–36, 1955.
[198]

[193] Eugene Salamin. Computation of π using arithmetic-geometric mean. Math-
ematics of Computation, 30:565–570, 1976. [196, 199]

226 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

[194] Bruno Salvy and Paul Zimmermann. Gfun: A Maple package for the ma-
nipulation of generating and holonomic functions in one variable. ACM
Transactions on Mathematical Software, 20(2):163–177, 1994. [198]

[195] Martin S. Schmookler and Kevin J. Nowka. Leading zero anticipation and
detection – a comparison of methods. In N. Burgess and L. Ciminiera,
editors, Proceedings of the 15th IEEE Symposium on Computer Arithmetic
(ARITH-15), pages 7–12. IEEE Computer Society, 2001. [131]

[196] Arnold Schönhage. Schnelle Berechnung von Kettenbruchentwicklungen.
Acta Informatica, 1:139–144, 1971. [49, 195]

[197] Arnold Schönhage. Asymptotically fast algorithms for the numerical multi-
plication and division of polynomials with complex coefficients. In Computer
Algebra, EUROCAM’82, volume 144 of Lecture Notes in Computer Science,
pages 3–15. Springer-Verlag, 1982. [48]

[198] Arnold Schönhage. Variations on computing reciprocals of power series.
Information Processing Letters, 74:41–46, 2000. [132, 186]

[199] Arnold Schönhage, A. F. W. Grotefeld, and E. Vetter. Fast Algorithms:
A Multitape Turing Machine Implementation. BI-Wissenschaftsverlag,
Mannheim, 1994. [50, 132, 197]

[200] Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer
Zahlen. Computing, 7:281–292, 1971. [48, 84]

[201] Jeffrey Shallit and Jonathan Sorenson. A binary algorithm for the Jacobi
symbol. SIGSAM Bulletin, 27(1):4–11, 1993. http://euclid.butler.edu/

~sorenson/papers/binjac.ps. [50]

[202] Mark Shand and Jean Vuillemin. Fast implementations of RSA cryptogra-
phy. In Proceedings of the 11th IEEE Symposium on Computer Arithmetic
(ARITH-11), pages 252–259, 1993. [49]

[203] Malte Sieveking. An algorithm for division of power series. Computing,
10:153–156, 1972. [194]

[204] Neil J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. http://
www.research.att.com/~njas/sequences/, 2009. [196, 198]

[205] David M. Smith. Algorithm 693: A Fortran package for floating-point
multiple-precision arithmetic. ACM Transactions on Mathematical Software,
17(2):273–283, 1991. [195]

http://euclid.butler.edu/~sorenson/papers/binjac.ps
http://euclid.butler.edu/~sorenson/papers/binjac.ps
http://www.research.att.com/~njas/sequences/
http://www.research.att.com/~njas/sequences/

Modern Computer Arithmetic 227

[206] Jonathan P. Sorenson. Two fast GCD algorithms. Journal of Algorithms,
16:110–144, 1994. [49]

[207] Allan Steel. Reduce everything to multiplication. Computing by the Num-
bers: Algorithms, Precision, and Complexity, Workshop for Richard Brent’s
sixtieth birthday, Berlin, 2006. http://www.mathematik.hu-berlin.de/

~gaggle/EVENTS/2006/BRENT60/. [48]

[208] Guy L. Steele and Jon L. White. How to print floating-point numbers ac-
curately. In Proceedings of the ACM SIGPLAN’90 Conference on Program-
ming Language Design and Implementation, pages 112–126, White Plains,
NY, 1990. [132]

[209] Damien Stehlé and Paul Zimmermann. A binary recursive GCD algorithm.
In D. A. Buell, editor, Proceedings of the 6th International Symposium on
Algorithmic Number Theory (ANTS VI), volume 3076 of Lecture Notes in
Computer Science, pages 411–425, Burlington, USA, 2004. Springer-Verlag.
[39, 49]

[210] Josef Stein. Computational problems associated with Racah algebra. Journal
of Computational Physics, 1:397–405, 1967. [49]

[211] Pat H. Sterbenz. Floating-Point Computation. Prentice Hall, Englewood
Cliffs, NJ, USA, 1974. [131]

[212] Antonin Svoboda. An algorithm for division. Information Processing Ma-
chines, 9:25–34, 1963. [49]

[213] Earl E. Swartzlander, Jr., editor. Computer Arithmetic. Dowden, Hutchison
and Ross (distributed by Van Nostrand, New York), 1980. [84, 194]

[214] Hidetosi Takahasi and Masatake Mori. Double exponential formulas for
numerical integration. Publications of RIMS, Kyoto University, 9(3):721–
741, 1974. [198]

[215] Nico M. Temme. Special Functions: An Introduction to the Classical Func-
tions of Mathematical Physics. Wiley, 1996. [194]

[216] Emmanuel Thomé. Karatsuba multiplication with temporary space of size
≤ n, 2002. 6 pages, http://www.loria.fr/~thome/. [44]

[217] Keith D. Tocher. Techniques of multiplication and division for automatic bi-
nary computers. Quarterly Journal of Mechanics and Applied Mathematics,
11(3):364–384, 1958. [194]

http://www.mathematik.hu-berlin.de/~gaggle/EVENTS/2006/BRENT60/
http://www.mathematik.hu-berlin.de/~gaggle/EVENTS/2006/BRENT60/
http://www.loria.fr/~thome/

228 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

[218] Andrei L. Toom. The complexity of a scheme of functional elements real-
izing the multiplication of integers (in Russian). Doklady Akademii Nauk
SSSR, 150(3):496–498, 1963. Available from http://www.de.ufpe.br/

~toom/my_articles/rusmat/MULT-R.PDF. Translation in Soviet Mathemat-
ics 4 (1963), 714–716. [48]

[219] Joseph F. Traub. Iterative Methods for the Solution of Equations. Prentice-
Hall, Englewood Cliffs, New Jersey, 1964. [194]

[220] Lloyd N. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis?
SIAM Review, 50(1):67–87, 2008. [198]

[221] Minoru Urabe. Roundoff error distribution in fixed-point multiplication and
a remark about the rounding rule. SIAM Journal on Numerical Analysis,
5:202–210, 1968. [128]

[222] Brigitte Vallée. Dynamics of the binary Euclidean algorithm: functional
analysis and operators. Algorithmica, 22:660–685, 1998. [49]

[223] Charles F. Van Loan. Computational Frameworks for the Fast Fourier
Transform. SIAM, Philadelphia, 1992. [84]

[224] Linas Veps̆tas. An efficient algorithm for accelerating the convergence of
oscillatory series, useful for computing the polylogarithm and Hurwitz zeta
functions. http://arxiv.org/abs/math.CA/0702243, 2007. 37 pages. [198]

[225] Hubert S. Wall. Analytic Theory of Continued Fractions. Van Nostrand,
1948. [195]

[226] George N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge
University Press, second edition, 1966. [195]

[227] Kenneth Weber. The accelerated integer GCD algorithm. ACM Transactions
on Mathematical Software, 21(1):111–122, 1995. [34, 49]

[228] Edmund T. Whittaker and George N. Watson. A Course of Modern Analysis.
Cambridge University Press, fourth edition, 1927. [195]

[229] James H. Wilkinson. Rounding Errors in Algebraic Processes. HMSO, Lon-
don, 1963. [131, 194]

[230] James H. Wilkinson. The Algebraic Eigevalue Problem. Clarendon Press,
Oxford, 1965. [131, 194]

http://www.de.ufpe.br/~toom/my_articles/rusmat/MULT-R.PDF
http://www.de.ufpe.br/~toom/my_articles/rusmat/MULT-R.PDF
http://arxiv.org/abs/math.CA/0702243

Modern Computer Arithmetic 229

[231] Shmuel Winograd. On computing the discrete Fourier transform. Mathe-
matics of Computation, 32(141):175–199, 1978. [84]

[232] Roderick Wong. Asymptotic Approximation of Integrals. Academic Press,
1989. Reprinted by SIAM, 2001. [195]

[233] Chee K. Yap. Fundamental Problems in Algorithmic Algebra. Oxford Uni-
versity Press, 2000. [49]

[234] Doron Zeilberger. A holonomic systems approach to special function identi-
ties. J. Comput. Appl. Math., 32(3):321–348, 1990. [198]

[235] Paul Zimmermann. Karatsuba square root. Research Report 3805, INRIA,
1999. http://hal.inria.fr/docs/00/07/28/54/PDF/RR-3805.pdf. [49]

[236] Dan Zuras. More on squaring and multiplying large integers. IEEE Trans-
actions on Computers, 43(8):899–908, 1994. [45, 48]

http://hal.inria.fr/docs/00/07/28/54/PDF/RR-3805.pdf

Index

Abramowitz, Milton, 194, 195, 206
addition, 2, 99

carry bit, 11, 100
modular, 54

addition chain, xiv, 74
weighted, 83

Adleman, Leonard Max, 74
AGM, see arithmetic-geometric mean
Agrawal, Manindra, 49
Aho, Alfred Vaino, 49, 84
AKS primality test, 49
algorithm

AGM (for log), 173, 175
Akiyama-Tanigawa, 196
ApproximateReciprocal, 112, 129
ApproximateRecSquareRoot, 122
BackwardFFT, 59
Barrett’s, 63, 84, 119, 120, 129
BarrettDivRem, 64
BasecaseDivRem, 16, 45
BasecaseMultiply, 4, 43
BaseKExp, 76
BaseKExpOdd, 78
D. Bernstein’s, 132
R. Bernstein’s, 15
binary splitting, 178
BinaryDivide, 37
BinaryGcd, 34
bit-burst, 181, 193
Bluestein’s, 84

Brent-Salamin, 173, 197, 199
cryptographic, 74, 84
DivideByWord, 26
DivideNewton, 116, 120, 129, 132
DoubleDigitGcd, 33
Erf, 161, 190
EuclidGcd, 32
ExactDivision, 24, 132
ExtendedGcd, 35, 46
FastIntegerInput, 42, 47
FastIntegerOutput, 43
FastREDC, 67
FEE, 178
FFTMulMod, 60
ForwardFFT, 57
FPadd, 100
FPmultiply, 105
FPSqrt, 121, 129
Friedland’s, 197
Fürer’s, 62, 84
Gauss-Legendre, 173, 197, 199
HalfBinaryGcd, 38, 47
HalfGcd, 47
IntegerAddition, 2
IntegerInput, 41
IntegerOutput, 41
IntegerToRNS, 79, 84
IsPower, 31
KaratsubaMultiply, 6, 44
lazy, 2, 48

230

Modern Computer Arithmetic 231

LeftToRightBinaryExp, 76, 82
LiftExp, 142
McLaughlin’s, 68–70, 83
ModularAdd, 54, 82
ModularInverse, 71
Montgomery’s, 65
MontgomerySvoboda2, 68
Mulders’, 103
MultipleInversion, 73, 84
MultMcLaughlin, 69
OddEvenKaratsuba, 10, 44
off-line, 2, 48
on-line, 48
parallel, 49, 53, 73, 82, 83, 190,

195
Payne and Hanek, 110
PrintFixed, 125, 129
Rader’s, 84
RecursiveDivRem, 20, 46
REDC, 65
ReducedRatMod, 35, 49
relaxed, 2, 48
RightToLeftBinaryExp, 82
RNSToInteger, 80
RootInt, 30
RoundingPossible, 97
Sasaki-Kanada, 175
Schönhage-Strassen, 54, 60, 70, 84,

115, 131, 201
SecantNumbers, 191, 192, 196
SeriesExponential, 192, 193
ShortDivision, 118, 120, 131
ShortProduct, 105, 131
SinCos, 181
SqrtInt, 29, 46, 49
SqrtRem, 28, 49
Strassen’s, 40, 133
SvobodaDivision, 19, 45

systolic, 49
TangentNumbers, 170, 191, 192,

196
ToomCook3, 8
UnbalancedDivision, 22, 46
unrestricted, 130, 136
zealous, 48
Ziv’s, 93

aliasing, 194
Andrews, George Eyre, 194, 195
ANU, xi
Apostol, Tom Mike, 195
ARC, xi
argument reduction, 109, 143–147

additive, 144
multiplicative, 145

arithmetic-geometric mean, 171–177
advantages, 171
complex variant, 177
drawbacks, 176
error term, 173
for elliptic integrals, 172
for logarithms, 173–176
optimisation of, 176, 197
Sasaki-Kanada algorithm, 175
scaling factor, 175
theta functions, 174

Arndt, Jörg, xi, 196, 199
ARPREC, 203
Askey, Richard Allen, 194, 195
asymptotic equality notation ∼, xv
asymptotic expansions, 157, 195
asymptotic series notation, xv
Avizienis representation, 78

Bach, (Carl) Eric, 50
Bachmann, Paul Gustav Heinrich, 50
Backeljauw, Franky, 195

232 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

backward summation, 146, 149
Bailey, David Harold, 198, 199, 203
balanced ternary, 128
Barrett’s algorithm, 63–65, 67, 83, 84,

119, 129
Barrett, Paul, 63, 64
base, xiv, 1, 86

conversion, 40, 207
Batut, Christian, 205
Becuwe, Stefan, 195
Beeler, Michael, 196
Belabas, Karim, 205
Bellard, Fabrice, 199
Bernardi, Dominique, 205
Bernoulli numbers, xiii, 159, 167, 169,

184, 191
Akiyama-Tanigawa algorithm, 196
complexity of evaluation, 192
denominators of, 169
fast evaluation, 192
Harvey’s algorithm, 196
scaled, xiii
space required for, 184, 191
stable computation, 168, 191, 195
via tangent numbers, 169

Bernstein, Daniel Julius, 47, 49, 83,
84, 132, 196

Bernstein, Joseph Naumovich, 198
Bernstein, Robert, 15
Berry, Michael Victor, 198
Bertot, Yves, 49
Bessel functions, 166

first kind, Jν(x), 166
in computation of γ, 159, 199
Miller’s algorithm, 167
second kind, Yν(x), 166

Bessel’s differential equation, 166
Bessel, Friedrich Wilhelm, 165

Bézout coefficients, 35
Bézout, Étienne, 35
Big O notation, xv
binary coded decimal (BCD), 87
binary exponentiation, 75
binary number, notation for, xvi
binary representation, 2

conversion to decimal, 40
binary splitting, 178–180, 193, 197,

201
CLN library, 197
for 1/π, ζ(3), 199
for sin/cos, 180
versus FEE method, 197

binary-integer decimal (BID), 87
binary64, 88, 89, 130
BinaryDivide, 36
binomial coefficient, xiii, 46
bipartite modular multiplication, 83
bit reversal, 57, 58
bit-burst algorithm, 180–184, 193
Bluestein, Leo Isaac, 84
Bodrato, Marco, xi, 48, 129
Boldo, Sylvie, 128
Bonan-Hamada, Catherine, 195
Booth representation, 78, 84
Bornemann, Folkmar, 198, 199
Borodin, Allan Bertram, 49, 84
Borwein, Jonathan Michael, 172–175,

196–199, 207
Borwein, Peter Benjamin, 172–175,

196–199, 207
Bostan, Alin, 131
branch prediction, 18
Brent, Erin Margaret, xi
Brent, Richard Peirce, 49, 130, 131,

180, 197, 199
Brent-McMillan algorithm, 159, 199

Modern Computer Arithmetic 233

Brent-Salamin algorithm, 173, 197, 199
Briggs, Keith Martin, 49
Bruijn, see de Bruijn
Bulirsch, Roland Zdeněk, 198
Bürgisser, Peter, 45, 133
Burnikel, Christoph, 49
butterfly operation, 57

C, 72, 202–205
C++, 201, 203, 205
cancellation, 150
Cannon, John Joseph, 204
carry bit, 11, 44, 100
catastrophic cancellation, 150
Cauchy principal value, xvi, 157
Cauchy’s theorem, 184
Cayley, 204
ceiling function ⌈x⌉, xv
Chen, Kwang-Wu, 196
Cheng, Howard, 199
Chinese remainder representation, see

modular representation
Chinese remainder theorem (CRT), 79–

81, 84
explicit, 53
reconstruction, 80, 84

Chiu Chang Suan Shu, 49
Chudnovsky, David Volfovich, 180,

197, 199
Chudnovsky, Gregory Volfovich, 180,

197, 199
Chung, Jaewook, 48
classical splitting, 154
Clausen, Michael Hermann, 45, 133
Clausen, Thomas, 169, 196
Clenshaw, Charles William, 130, 195,

198
Clenshaw-Curtis quadrature, 198

Clinger, William Douglas, 132
CLN, 197, 201
Cohen, Henri, 49, 205
Collins, George Edwin, 131
complementary error function, see

erfc(x)
complex

AGM, 177
arithmetic, 204
multiplication, 177
square root, 197
squaring, 177

complexity
arithmetic, 3, 4
asymptotic, 8
bit, 4

concatenation, notation for, xvi, 41
continued fraction

approximant, 163
backward recurrence, 164, 190
error bound, 165, 190
fast evaluation, 190, 195
for E1, 163
for erfc, 163
forward recurrence, 164, 190
notation for, xvi, 163
regular, 32

contour integration, 184, 198
convolution, xiv, 84

convolution theorem, 55
cyclic, xiv, 82, 107
via FFT, 69, 107

Cook, Stephen Arthur, 48
Cornea-Hasegan, Marius Adrian, 132,

133
correct rounding ◦n, 92
cosh(x), 147
Cowlishaw, Mike, 132, 207

234 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Crandall, Richard Eugene, 48, 131
Crary, Fred D., 198
CRT, see Chinese remainder theorem
cryptographic algorithm, 74, 84
Curtis, Alan R., 198
Cuyt, Annie, 195

D-finite, see holonomic
DBNS, 84
DDMF, 207
de Bruijn, Nicolaas Govert (Dick), 195
decimal arithmetic, 87
decimal representation, 2

conversion to binary, 40
decimal64, 130
deg, xv
determinant, notation for, xvi
DFT, see Discrete Fourier transform
differentiably finite, see holonomic
Diffie, Bailey Whitfield, 74
Diffie-Hellman key exchange, 74
Dimitrov, Vassil S., 84
Discrete Fourier transform, 55, 69

notation for, xv
div notation, xiv
divide and conquer

for conversion, 41
for GCD, 36
for multiplication, 5

division, 15–27, 53
by a single word, 25, 45
classical versus Hensel, 26
divide and conquer, 19
Euclidean, 53
exact, 16, 23, 46
full, 16
Goldschmidt’s iteration, 132
modular, 70

notation for, xiv
paper and pencil, 27
SRT algorithm, 136, 139, 194
time for, D(n), xiv, 110
unbalanced, 21, 46

divisor
implicitly invariant, 64, 84
notation for, xiv
preconditioning, 18, 66

Dixon, Brandon, 48
DLMF, 206
double rounding, 97
double-base number system, 84
doubling formula, 144–147, 186

for exp, 144
for sin, 144
for sinh, 147
versus tripling, 147, 195

Dupont, Régis, 196

e, see Euler’s constant e
ECM, see elliptic curve method
Ehrhardt, Wolfgang, xi
Ein(x), 188
elementary function, 135–156
El Gamal, Taher, 74
El Gamal cryptosystem, 74
elliptic curve cryptography, 70
elliptic curve method, 83
elliptic integral, 172

first kind, 172
modulus, 172
nome, 175
second kind, 172

email addresses, x
Enge, Andreas, 48, 129, 204
entire function, 152
Ercegovac, Milǒs Dragutin, 133

Modern Computer Arithmetic 235

erf(x), 150, 160, 188
erfc(x), 150, 160, 163
error correction, 81
error function, see erf(x)
ESF, 207
Estrin, Gerald, 195
Euclid, 32
Euclidean algorithm, see GCD
Euler’s constant e, 199
Euler’s constant γ, 199

Brent-McMillan algorithm, 159, 199
Euler-Maclaurin approx., 159

Euler’s totient function, xiv
Euler-Maclaurin formula, 158, 195
exp(x), see exponential
exponent, 85, 87, 90
exponential

addition formula, 144
binary splitting for, 197
expm1, 147, 186
notations for, xv

exponential integral, 157, 163, 188,
189

exponentiation
binary, 75
modular, 74–79

extended complex numbers Ĉ, 163

Fast Fourier transform (FFT), 8, 55,
70, 93, 131

Bluestein’s algorithm, 84
complex, 107
in place algorithm, 57
over finite ring, 107
padding, 62, 107
Rader’s algorithm, 84
rounding errors in, 107
use for multiplication, 62, 107

FEE method, 178, 197
versus binary splitting, 197

Féjer, Leopold, 198
Fermat, Pierre de

little theorem, 75, 169
FFT, see Fast Fourier transform
field, finite, 83, 84

representation, 53
Figures

Figure 1.1, 13
Figure 1.2, 14
Figure 1.3, 22
Figure 1.4, 23
Figure 1.5, 27
Figure 2.1, 53
Figure 2.2, 69
Figure 2.3, 73
Figure 3.1, 104
Figure 3.2, 106
Figure 3.3, 109
Figure 3.4, 110
Figure 3.5, 119

finite field, see field
floating-point

addition, 99, 130
binary64, 88
choice of radix, 130
comparison, 99
conversion, 124, 132
decimal, 124
division, 110
double precision, 88
encoding, 90
expansions, 93, 131
guard digits, 146
input, 127
level-index representation, 130
loss of precision, 145

236 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

multiplication, 103
output, 124
reciprocal, 110, 111, 132
reciprocal square root, 121
redundant representations, 130
representation, 85
sign-magnitude, 91
special values, 88
square root, 120
subtraction, 99, 101
via integer arithmetic, 92

floor function ⌊x⌋, xv
fmaa instruction, 43
folding, 68
Fortran, 203
forward summation, 146, 149
Fourier transform, see DFT
fraction, see significand
free format, 133
Friedland, Paul, 197
function, D-finite, see holonomic
function, elementary, see elementary
function, holonomic, see holonomic
function, special, see special
functional inverse, 135
Fürer, Martin, 84

Gabcke sequence, 198
Gabcke, Wolfgang, 198
Galbraith, Steven Douglas, xi, 47
γ, see Euler’s constant γ
Gamma function Γ(x), 145, 148, 150,

160–162, 188, 189, 192, 198,
199

on imaginary axis, 189
Gathen, see von zur Gathen
Gaubatz, Gunnar, 83
Gaudry, Pierrick, 203

Gaunt, John Arthur, 198
Gauss, Johann Carl Friedrich, 50, 171
Gauss-Kuz’min theorem, 49
Gauss-Legendre, 197
Gauss-Legendre algorithm, 173, 197,

199
Gaussian quadrature, 198
Gautschi, Walter, 195
Gay, David M., 132
GCD, 31

algorithms for, 31
Bézout coefficients, 35
binary, 33, 53
cofactors, 35
continued fraction from, 32
divide and conquer, 36
double digit, 32, 36
Euclidean, 32, 49, 53
extended, 32, 35, 46, 71
half binary, 36
Lehmer’s algorithm, 32
multipliers, 35
notation for, xiv
plain, 32
Sorenson’s algorithm, 32
subquadratic, 36–41, 47
subtraction-only algorithms, 32

Gerhard, Jürgen, 83
Girgensohn, Roland, 198
GMP, xi, 202, 205, 206
gnuplot, xi
Goldberg, David Marc, 130
Goldschmidt’s iteration, 132
Golliver, Roger Allen, 132
Goodwin, Charles E. T., 195
Gopal, Vinodh, 83
Gosper, Ralph William, Jr., 196
Gourdon, Xavier Richard, 198, 199

Modern Computer Arithmetic 237

GP, 205
GPL, 201
Graham, Ronald Lewis, 196
Granlund, Torbjörn, xi, 45, 84, 202
greatest common divisor, see GCD
Grotefeld, Andreas FriedrichWilhelm,

132
group operation

cost of, 83
notation for, 79

guard digits, 104, 128, 146
for AGM, 176
for Bernoulli numbers, 168, 185
for catastrophic cancellation, 150
for exp, 186
for subtraction, 102
for summation, 149
negative, 176

Haenel, Christoph, 199
Haible, Bruno, 201
HAKMEM, 196
HalfBezout, 33
HalfBinaryGcd, 37, 71
HalfGcd, 47
Hanek, Robert N., 109, 132
Hankerson, Darrel Richard, 84
Hanrot, Guillaume, xi, 43, 44, 48, 131,

199
harmonic number, xiii, 188
Hars, Laszlo, 83
Harvey, David, 43, 45, 48, 132, 192,

193, 196, 197
Hasan, Mohammed Anwarul, 48
Hasenplaugh, William, 83
H̊astad, Johan Torkel, 45
Hellman, Martin Edward, 74
Hennessy, John LeRoy, 130

Hensel
division, 26–27, 49, 53, 63–66, 72
lifting, 23, 24, 34, 49, 53, 71

Hensel, Kurt Wilhelm Sebastian, 53
Heron of Alexandria, 140
Higham, Nicholas John, 131, 194
Hille, Einar Carl, 184
Hoeven, see van der Hoeven
holonomic function, 151, 181, 193, 198
Hopcroft, John Edward, 49, 84
Horner’s rule, 148, 154, 155

forward, 186
Horner, William George, 148
Householder, Alston Scott, 194
Hull, Thomas Edward, 131
Hurwitz zeta-function, 198
Hurwitz, Adolf, 198
hypergeometric function, 151, 172, 181

idempotent conversion, 133
IEEE 754 standard, 85, 130

extension of, 203
IEEE 854 standard, 130
iff, xiv
infinity, 88
INRIA, xi
integer

notation for, xvi
integer division

notation for, xiv
integer sequences, 207
interval arithmetic, 204, 207
inversion

batch, 84
modular, 35, 70–74, 82

Iordache, Cristina S., 131
ISC, 207
Ispiryan, Karen R., 43

238 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Jacobi symbol, 47, 50
notation for, xiv
subquadratic algorithm, 47, 50

Jacobi, Carl Gustav Jacob, 47
Jebelean, Tudor, 49
Johnson, Jeremy Russell, 131
Jones, William B., 195
Jullien, Graham A., 84

Kahan, William Morton, 133
Kaihara, Marcelo Emilio, 83
Kanada, Yasumasa, 176, 196
Kaneko, Masanobu, 196
Karatsuba’s algorithm, 5–7, 43, 44,

48, 67, 177
in-place version, 44
threshold for, 44

Karatsuba, Anatolii Alekseevich, 45,
48, 67, 103

Karatsuba, Ekatherina Anatolievna,
197

Karp, Alan Hersh, 24, 49, 132, 194
Karp-Markstein trick, 24, 49, 132, 194
Kayal, Neeraj, 49
Khachatrian, Gurgen H., 43, 48
Khinchin, Aleksandr Yakovlevich, 49,

195
Kidder, Jeffrey Nelson, 128
Knuth, Donald Ervin, xi, 48, 49, 131,

195, 196
Koornwinder, Tom Hendrik, 198
Krandick, Werner, 49, 131
Kreckel, Richard Bernd, 201
Kronecker, Leopold, 48
Kronecker-Schönhage trick, 3, 43, 46,

48, 54, 83
Kulisch, Ulrich Walter Heinz, 133
Kung, Hsiang Tsung, 49, 194

Kuregian, Melsik K., 43
Kuz’min, Rodion Osievich, 49

Lagrange interpolation, 7, 80
Lagrange, Joseph Louis, 7
Landen transformations, 177, 196
Landen, John, 177
Lang, Tomas, 131
Laurie, Dirk, 198, 199
lazy algorithm, 2, 48
leading zero detection, 102
Lecerf, Grégoire, 131
Lefèvre, Vincent, 48, 130, 131
Legendre, Adrien-Marie, 171, 199
Lehmer, Derrick Henry, 33, 49, 198
Lehmer-Gabcke sequence, 198
Lenstra, Arjen Klaas, 48
Lenstra, Hendrik Willem, Jr., 49
level-index arithmetic, 130
lg, see logarithm
LGPL, 202, 203
Lickteig, Thomas Michael, 133
lists versus arrays, 91
little o notation, xv
ln, see logarithm
Loan, see Van Loan
log, see logarithm
log1p, see logarithm
Logan, Benjamin Franklin “Tex”, Jr.,

196
logarithm

addition formula, 144
computation via AGM, 173
lg(x), ln(x), log(x), xv
log1p, 152, 187
notations for, xv
Sasaki-Kanada algorithm, 175

logical operations, xiv

Modern Computer Arithmetic 239

LSB, 24, 27, 31, 53
Luschny, Peter, 46
Lyness, James N., 198

machine precision, xiv
Maeder, Roman Erich, 44
Magaud, Nicolas, 49
Magma, 204
mailing lists, 206
mantissa, see significand
Maple, 198, 205
Markstein, Peter, 24, 49, 132, 194
Martin, David W., 195
MasPar, 48
Massey, James Lee, 43
Mathematica, 205
Mathematics Genealogy Project, xi
matrix multiplication, 45, 133
matrix notation, xv
Matula, David William, 131
Maze, Gérard, 49
MCA, 83
McLaughlin’s algorithm, 62, 63, 68–

70, 83
polynomial version, 83

McLaughlin, Philip Burtis, Jr., 44,
68, 83

McMillan, Edwin Mattison, 199
Menezes, Alfred John, 84
Ménissier-Morain, Valérie, 130
Mezzarobba, Marc, xi, 193
Microsoft, 202
middle product, 24, 45, 109
Mihailescu, Preda V., 83
Mikami, Yoshio, 49
Miller’s algorithm, 167, 190, 195
Miller, Jeffrey Charles Percy, 167, 195
Miller, William C., 84

mod notation, xiv
modular

addition, 54
division, 70
exponentiation, 74–79, 84
base 2k, 76

inversion, 35, 70–74, 82
multiplication, 63–70
splitting, 154
subtraction, 54

modular arithmetic
notation for, xiv
special moduli, 70, 71, 84

modular representation, 79
comparison problem, 81
conversion to/from, 79
redundant, 81
sign detection problem, 81

Moenck, Robert Thomas, 49, 84
Moler, Cleve Barry, 198
Möller, Niels, 45, 47, 49, 84
Montgomery’s algorithm, 63
Montgomery’s form, 52, 65
Montgomery multiplication, 65–68

subquadratic, 67
Montgomery reduction, 27, 53
Montgomery, Peter Lawrence, 45, 52,

83, 84
Montgomery-Svoboda algorithm, 53,

66–68, 82, 83
Mori, Masatake, 198
MP, 194, 195, 203
MPC, 204, 205
MPFI, 204
MPFQ, 203
MPFR, 203, 205
MPIR, 202
MSB, 23, 24, 27, 31, 53

240 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Mulders, Thom, 104, 128, 131
Muller, Jean-Michel, xi, 131–133, 194
multiplication

by a constant, 15
carry bit, 44
complex, 177
FFT range, 9
Fürer’s algorithm, 84
Karatsuba’s algorithm, 177
modular, 63–70
of integers, 3–49
of large integers, 62
Schönhage-Strassen, 54
schoolbook, 5
short product, 103
time for, M(n), xiv
unbalanced, 9–12, 45
complexity of, 12

via complex FFT, 107
multiplication chain, 74

weighted, 83
Munro, (James) Ian, 84

NaN, 88
quiet, 88
signalling, 88

nbits, xv
nearest integer function ⌊x⌉, xv
Neumann, Carl Gottfried, 166
Newton’s method, 23, 27, 28, 53, 71,

111, 124, 135–143, 194
for functional inverse, 141, 151
for inverse roots, 138
for power series, 140
for reciprocal, 138
for reciprocal square root, 139
higher order variants, 142
Karp-Marstein trick, 194

p-adic (Hensel lifting), 24
Newton, Isaac, 23, 53, 111, 135
Nicely, Thomas R., 139
NIST, 84
NIST Digital Library, 206
normalized divisor, 16
Not a Number (NaN), 88
Nowka, Kevin John, 131
NTL, 205
numerical differentiation, 198
numerical instability

in summation, 150
recurrence relations, 168

numerical quadrature, see quadrature
Nussbaumer, Henri Jean, 84

odd zeta-function, 170
odd-even scheme, 10, 48, 154, 186
Odlyzko, Andrew Michael, 198
Odlyzko-Schönhage algorithm, 198
OEIS, 207
off-line algorithm, 2, 48
Olivier, Michel, 205
Olver, Frank William John, 130, 195
Omega notation Ω, xv
on-line algorithm, 48
Oorschot, see van Oorschot
ord, xv
Osborn, Judy-anne Heather, xi

Paar, Christof, 44
p-adic, 53
Pan, Victor Yakovlevich, 131
Papanikolaou, Thomas, 199
PARI/GP, 205
Patashnik, Oren, 196
Paterson, Michael Stewart, 195
Patterson, David Andrew, 130

Modern Computer Arithmetic 241

Payne and Hanek
argument reduction, 109, 132

Payne, Mary H., 109, 132
Pentium bug, 139, 194
Percival, Colin Andrew, 84, 128, 129,

131
Pétermann, Yves-François Sapphorain,

198
Petersen, Vigdis Brevik, 195
phi function φ, xiv
π, 199

Brent-Salamin algorithm, 173, 196
Chudnovsky series, 199
Gauss-Legendre algorithm, 173
record computation, 199

Pila, Jonathan S., 49
Plouffe, Simon, 207
Pollard, John Michael, 83, 84
polylogarithm, 198
polynomial evaluation, 153
Pomerance, Carl, 48
power

computation of, 74
detection of, 31, 49

power series
argument reduction, 152
assumptions re coefficients, 151
backward summation, 146, 149
direct evaluation, 152
forward summation, 146, 149
radius of convergence, 151

precision, xiv
local/global, 91
machine, 149
operand/operation, 91, 131
reduced, 176
working, 98, 149

Priest, Douglas M., 93, 131

product tree, 73
pseudo-Mersenne prime, 70, 84
PV
∫
, see Cauchy principal value

Python, 205

quadrature
Clenshaw-Curtis, 198
contour integration, 184
Gaussian, 198
numerical, 198
Romberg, 198
tanh-sinh, 198

Quercia, Michel, 44, 45, 131
Quisquater, Jean-Jacques, 83
quotient selection, 18, 19, 66

Rader, Charles M., 84
radix, xiv, 85–87

choice of, 87
mixed, 90
radix ten, 124

rational reconstruction, 40
reciprocal square root, 121, 139
rectangular series splitting, 153–156,

195
recurrence relations, 165
REDC, 65, 83
redundant representation

for error detection/correction, 81
for exponentiation, 78
for modular addition, 52

Reinsch, Christian, 195
relaxed algorithm, 2, 48
relaxed multiplication, 82
remainder tree, 47, 73
Rémy, Jean-Luc, 198
residue class representation, 51
residue number system, 53, 79, 83

242 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Reyna, Juan Arias de, 198
Richardson extrapolation, 198
Richardson, Lewis Fry, 198
Riemann Hypothesis

computational verification, 198
Riemann zeta-function, 159, 199

at equally spaced points, 198
at even integers, 170
Bernoulli numbers, 171
Borwein’s algorithm, 198
error analysis, 198
Euler-Maclaurin expansion, 159,

198
odd zeta-function, 170
Odlyzko-Schönhage algorithm, 198
Riemann-Siegel formula, 198

Riemann, Georg Friedrich Bernhard,
159

Rivest, Ronald Linn, 74
RNS, see residue number system
Robertson, James Evans, 194
Roche, Daniel Steven, 44
Roegel, Denis, xi
Romberg quadrature, 198
Romberg, Werner, 198
root

k-th, 29
Goldschmidt’s iteration, 132
inverse, 138
principal, 55
square, 27–29, 120
complex, 133, 197
paper and pencil, 27
wrap-around trick, 124

Rosser, John Barkley, 198
rounding

away from zero, 94
boundary, 93

correct, 92, 149
double, 97
mode, 94, 130
notation for, xiv
probabilistic, 94
round bit, 96, 100
sticky bit, 96, 100, 130
stochastic, 94
strategies for, 98
to nearest, 89, 94–98
balanced ternary, 128

to odd, 128
towards zero, 94, 128
Von Neumann, 128

rounding mode ◦, 92–99
Roy, Ranjan, 194, 195
RSA cryptosystem, 74
runs of zeros/ones, 131
Ryde, Kevin, 44

Sage, 205
Salamin, Eugene, 196, 199
Salvy, Bruno, 193
Sasaki, Tateaki, 176, 196
Saxena, Nitin, 49
Schmid, Wolfgang Alexander, xi
Schmookler, Martin S., 131
Schönhage, Arnold, xi, 47–50, 132,

186, 195, 198
Schönhage-Strassen algorithm, 54, 60,

70, 84, 115, 131, 201
Schost, Éric, 131, 186
Schroeppel, Richard Crabtree, 196
Sebah, Pascal, 199
secant numbers, 170, 192
Sedjelmaci, Sidi Mohamed, xi
Sedoglavic, Alexandre, 46

Modern Computer Arithmetic 243

segmentation, see Kronecker-
Schönhage trick

Sergeev, Igor S., 197
Shallit, Jeffrey Outlaw, 50
Shamir, Adi, 74
Shand, Mark Alexander, 49
Shokrollahi, Mohammad Amin, 45, 133
short division, 131
short product, 67, 103–106, 131
Shoup, Victor John, 46, 205
Sieveking, Malte, 194
sign, xv
sign-magnitude, 2, 52, 91, 99
significand, 85, 90
sin(x), 144
sinh(x), 147
sliding window algorithm, 77
Sloane, Neil James Alexander, 207
Smith’s method, see rectangular

series splitting
Smith, David Michael, 195
software tools, 201
Sorenson, Jonathan Paul, 33, 49, 83,

84
special function, 135–199, 206–207
special moduli, 70, 71, 84
splitting

classical, 154
modular, 154

square root, see root
squaring, 12, 45

complex, 177
SRT division, 136, 139, 194
Staudt, Karl Georg Christian von, 169,

196
Steel, Allan, 48
Steele, Guy Lewis, Jr., 132
Stegun, Irene Anne, 194, 195, 206

Stehlé, Damien, 47, 49
Stein, Josef, 49
Stein, William Arthur, 206
Sterbenz’s theorem, 102, 131
Sterbenz, Pat Holmes, 102, 131
sticky bit, 96, 130
Stirling numbers, 189, 196
Stirling’s approximation

convergent form, 189
for ln Γ(iy), 189
for ln Γ(x), 162
for ln Γ(z), 160
for n! or Γ(z), 145, 148, 150, 160,

192, 198
with error bounds, 158

Stirling, James, 145
Stockmeyer, Larry Joseph, 195
Stoer, Josef, 198
Strassen’s algorithm, 40
Strassen, Volker, 40, 133
strings

concatenation, xvi, 41
subnormal numbers, 88

smallest, xiv
substitution, see Kronecker-

Schönhage trick
subtraction, 2, 99

guard digits, 102
leading zero detection, 102
modular, 54

summation
backward, 146, 149
forward, 146, 149

Svoboda’s algorithm, 18, 25, 45, 49,
53, 66, 68, 83

Svoboda, Antonin, 49, 53
Swartzlander, Earl E., Jr., 84, 194
Sweeney, Dura Warren, 194

244 Modern Computer Arithmetic, version 0.5.1 of April 28, 2010

Tables
Table 3.1, 96
Table 3.2, 101
Table 3.3, 108
Table 4.1, 178

Takagi, Naofumi, 83
Takahasi, Hidetosi, 198
tan(x), 144, 169
tangent numbers, xiii, 169, 191, 196

algorithm for, 169
complexity of evaluation, 192
space required for, 191

Tellegen’s principle, 131
Temme, Nico M., 194, 198
tensor rank, 45, 133
ternary system, 128
theta functions, 174
Theta notation Θ, xv
Théveny, Philippe, 204
Thomé, Emmanuel, xi, 44, 45, 199,

203
Tocher, Keith Douglas, 194
Toom, Andrei Leonovich, 48
Toom-Cook multiplication, 7–8, 44,

45
time for, 7

totient function, xiv
Traub, Joseph Frederick, 194
Trefethen, (Lloyd) Nicholas, 198, 199
tripling formula

for sin, 144
for sinh, 147
in FFT range, 147, 195

Ullman, Jeffrey David, 49, 84
unbalanced multiplication, 9–12, 45
unit in the last place (ulp), xiv, 86,

93

unrestricted algorithm, 130, 136
for exp, 195

Vallée, Brigitte, 49
valuation, xiv
van der Hoeven, Joris, 48, 82, 132,

193, 198
Van Loan, Charles Francis, 84
van Oorschot, Paul Cornelis, 84
Vandermonde matrix, 7
Vanstone, Scott Alexander, 84
vectors, notation for, xv
Veps̆tas, Linas, 198
Verdonk, Brigitte, 195
Vetter, Herbert Dieter Ekkehart, 132
Vidunas, Raimundas, 198
Von Neumann, John (János Lajos),

128
Von Staudt-Clausen theorem, 169, 196
von zur Gathen, Joachim, 83
Vuillemin, Jean Etienne, 44, 49

Waadeland, Haakon, 195
Wagon, Stanley (Stan), 198, 199
Waldvogel, Jörg, 198, 199
Wall, Hubert Stanley, 195
Wang, Paul Shyh-Horng, 49
Watson, George Neville, 195
Weber functions, Yν(x), 166
Weber, Heinrich Friedrich, 166
Weber, Kenneth, 49
Weimerskirch, André, 44
Wezelenburg, Mark, xi
White, Jim, 187
White, Jon L., 132
Whittaker, Edmund Taylor, 195
Wilkinson, James Hardy, 131, 194, 195
Winograd, Shmuel, 84

Modern Computer Arithmetic 245

Wolfram, Stephen, 205
Wong, Roderick, 195
wrap-around trick, 65, 114

Yap, Chee-Keng, 49

Zanoni, Alberto, 48
zealous algorithm, 48
Zeilberger, Doron, 198
zero, ±0, 88, 91
ζ(3), 199
Ziegler, Joachim, 49
Zima, Eugene, 199
Zimmermann, Marie, xi
Zimmermann, Paul Vincent, 48, 49,

131, 199, 204
Ziv’s algorithm, 93
Zuras, Dan, 45, 48

Summary of Complexities

Integer Arithmetic (n-bit or (m,n)-bit input)

Addition, Subtraction O(n)
Multiplication M(n)

Unbalanced Multiplication (m ≥ n) M(m,n) ≤ ⌈m
n
⌉M(n),M(m+n

2
)

Division O(M(n))
Unbalanced Division (with remainder) D(m+ n, n) = O(M(m,n))

Square Root O(M(n))
k-th Root (with remainder) O(M(n))

GCD, extended GCD, Jacobi symbol O(M(n) logn)
Base Conversion O(M(n) logn)

Modular Arithmetic (n-bit modulus)

Addition, Subtraction O(n)
Multiplication M(n)

Division, Inversion, Conversion to/from RNS O(M(n) logn)
Exponentiation (k-bit exponent) O(kM(n))

Floating-Point Arithmetic (n-bit input and output)

Addition, Subtraction O(n)
Multiplication M(n)

Division O(M(n))
Square Root, k-th Root O(M(n))

Base Conversion O(M(n) logn)
Elementary Functions
(in a compact set O(M(n) logn)

excluding zeros and poles)

	Contents
	Preface
	Acknowledgements
	Notation
	1 Integer Arithmetic
	1.1 Representation and Notations
	1.2 Addition and Subtraction
	1.3 Multiplication
	1.3.1 Naive Multiplication
	1.3.2 Karatsuba's Algorithm
	1.3.3 Toom-Cook Multiplication
	1.3.4 Use of the Fast Fourier Transform (FFT)
	1.3.5 Unbalanced Multiplication
	1.3.6 Squaring
	1.3.7 Multiplication by a Constant

	1.4 Division
	1.4.1 Naive Division
	1.4.2 Divisor Preconditioning
	1.4.3 Divide and Conquer Division
	1.4.4 Newton's Method
	1.4.5 Exact Division
	1.4.6 Only Quotient or Remainder Wanted
	1.4.7 Division by a Single Word
	1.4.8 Hensel's Division

	1.5 Roots
	1.5.1 Square Root
	1.5.2 k-th Root
	1.5.3 Exact Root

	1.6 Greatest Common Divisor
	1.6.1 Naive GCD
	1.6.2 Extended GCD
	1.6.3 Half Binary GCD, Divide and Conquer GCD

	1.7 Base Conversion
	1.7.1 Quadratic Algorithms
	1.7.2 Subquadratic Algorithms

	1.8 Exercises
	1.9 Notes and References

	2 Modular Arithmetic and the FFT
	2.1 Representation
	2.1.1 Classical Representation
	2.1.2 Montgomery's Form
	2.1.3 Residue Number Systems
	2.1.4 MSB vs LSB Algorithms
	2.1.5 Link with Polynomials

	2.2 Modular Addition and Subtraction
	2.3 The Fourier Transform
	2.3.1 Theoretical Setting
	2.3.2 The Fast Fourier Transform
	2.3.3 The Schönhage-Strassen Algorithm

	2.4 Modular Multiplication
	2.4.1 Barrett's Algorithm
	2.4.2 Montgomery's Multiplication
	2.4.3 McLaughlin's Algorithm
	2.4.4 Special Moduli

	2.5 Modular Division and Inversion
	2.5.1 Several Inversions at Once

	2.6 Modular Exponentiation
	2.6.1 Binary Exponentiation
	2.6.2 Exponentiation With a Larger Base
	2.6.3 Sliding Window and Redundant Representation

	2.7 Chinese Remainder Theorem
	2.8 Exercises
	2.9 Notes and References

	3 Floating-Point Arithmetic
	3.1 Representation
	3.1.1 Radix Choice
	3.1.2 Exponent Range
	3.1.3 Special Values
	3.1.4 Subnormal Numbers
	3.1.5 Encoding
	3.1.6 Precision: Local, Global, Operation, Operand
	3.1.7 Link to Integers
	3.1.8 Ziv's Algorithm and Error Analysis
	3.1.9 Rounding
	3.1.10 Strategies

	3.2 Addition, Subtraction, Comparison
	3.2.1 Floating-Point Addition
	3.2.2 Floating-Point Subtraction

	3.3 Multiplication
	3.3.1 Integer Multiplication via Complex FFT
	3.3.2 The Middle Product

	3.4 Reciprocal and Division
	3.4.1 Reciprocal
	3.4.2 Division

	3.5 Square Root
	3.5.1 Reciprocal Square Root

	3.6 Conversion
	3.6.1 Floating-Point Output
	3.6.2 Floating-Point Input

	3.7 Exercises
	3.8 Notes and References

	4 Elementary and Special Function Evaluation
	4.1 Introduction
	4.2 Newton's Method
	4.2.1 Newton's Method for Inverse Roots
	4.2.2 Newton's Method for Reciprocals
	4.2.3 Newton's Method for (Reciprocal) Square Roots
	4.2.4 Newton's Method for Formal Power Series
	4.2.5 Newton's Method for Functional Inverses
	4.2.6 Higher Order Newton-like Methods

	4.3 Argument Reduction
	4.3.1 Repeated Use of a Doubling Formula
	4.3.2 Loss of Precision
	4.3.3 Guard Digits
	4.3.4 Doubling versus Tripling

	4.4 Power Series
	4.4.1 Direct Power Series Evaluation
	4.4.2 Power Series With Argument Reduction
	4.4.3 Rectangular Series Splitting

	4.5 Asymptotic Expansions
	4.6 Continued Fractions
	4.7 Recurrence Relations
	4.7.1 Evaluation of Bessel Functions
	4.7.2 Evaluation of Bernoulli and Tangent numbers

	4.8 Arithmetic-Geometric Mean
	4.8.1 Elliptic Integrals
	4.8.2 First AGM Algorithm for the Logarithm
	4.8.3 Theta Functions
	4.8.4 Second AGM Algorithm for the Logarithm
	4.8.5 The Complex AGM

	4.9 Binary Splitting
	4.9.1 A Binary Splitting Algorithm for sin, cos
	4.9.2 The Bit-Burst Algorithm

	4.10 Contour Integration
	4.11 Exercises
	4.12 Notes and References

	5 Implementations and Pointers
	5.1 Software Tools
	5.1.1 CLN
	5.1.2 GNU MP (GMP)
	5.1.3 MPFQ
	5.1.4 MPFR
	5.1.5 Other Multiple-Precision Packages
	5.1.6 Computational Algebra Packages

	5.2 Mailing Lists
	5.2.1 The BNIS Mailing List
	5.2.2 The GMP Lists
	5.2.3 The MPFR List

	5.3 On-line Documents

	Bibliography
	Index
	Summary of Complexities

