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Abstract

The starting point is a function due to Dirichlet, the function £(s)

(D"
B =) Gnr s
n=0
7
If s = 7 the value is 12173120 by isolating 61 we find first of all an approximation of 61, indeed
184320
1= — = 61.0271871 ...
s

Or more precisely

28 6! 1 1 1
61 = [1—?+——— ]

m’ 57 777

So, by inverting this series we get a good approximation of a prime number and if we push further
an equality. Here the number 61 is the 6th Euler number. The largest known Euler number that is

prime is Es1o a number of 1062 digits, there does not seem to be any other before E;9gg00- We
1

cos (x
be noted that the approximation provided by this process gives us

take here the numbers generated by the series where all the E,, are positive. It should also

2512 510!
E510 = 7_[511

which is excellent since 243 exact decimals out of 1062. The goal of this article is to find all
possible expressions that can represent a prime number.



The Euler, Bernoulli and Tangent numbers

As indicated in the summary, the Taylor expansion of the function 1/
cos (x) function provides the Euler numbers and if some of these are prime then we will
have a representation of this prime. It remains to find which other primes can be
represented. The Euler-Tangent numbers for example are obtained with the expression

1 + sin (x)
cos (x)

Which once developed in exponential series generates the numbers

1,1,1,2,5, 16, 61, 272, 1385, 7936, 50521, 353792, ... (sequence A000111 of the OEIS

2112 . . . ©al
catalog) whose general term, a(n) = n—n We notice that 2 is a factor in the initial

n+1
272 327 35 well as 277 since a(8) = 1385 =

expression, we can then represent 17 = — =

16 w8
1024+8! 8257536 . . . . .
— and thus 277 = — We can then obtain an approximation of this prime as well

as the exact expression by taking the series. Our list of primes is getting longer.

The list so faris 2, 5,17, 31, 61, 277, 691 and Ex4.
The expressions are always of the form

c™k!
p= dmn

(1)

Where c and d are constants, in the examples above,c =2 and d can be integer or
algebraic. These first few are just the tip of the iceberg for an obvious reason. It is easy to
generate numbers like Euler or Bernoulli with other trigonometric expressions like

sin(x) + cos(3x)
cos (4x)

The development in Taylor series gives the following sequence: 1, 1, 7, 47, 497, 6241,
95767,1704527,34741217, ...

We see 7, 47. So if we can calculate the general term a(n) of this sequence we can add the
first ones found to the list. Indeed, the general term is

8"I'(n)

2V 4 + 242

a(n) =
That we find in this way.
1) We develop in series the trigonometric expression
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2) We collect the coefficients with n!
3) We calculate a(n + 1)/a(n).

4) We calculate the differences term by term to find the constant 8/m.
5) We go backwards (retro-engineering) to isolate the constant d in the expression

(D).

This makes it possible to obtain that

83

7T~ —— 47 =

4422 m3

834!
4422 m*

The approximations found are coarse when n is small but the 200t term is of the order of
10*°* and a(200) has a precision of 95 decimal digits.

If we look at other functions like the ones above, we find other prime numbers,
here are some examples. All expressions are developed in exponential generating series.
In bold, a term over 2 is considered. Annnnnnrefers to the Online Encyclopedia of Integer

Sequences: OEIS.org.

Function Sequence General term Prime Example
A000464
sin(x) 1,11, 361, 24611, (2n + 1)1 24n+7/2 1113 19 11 7652
cos (2x) 2873041,512343611, L2n+z 2 i
1-2 cos (x) A000708 o
T st -1,-1,0,1,6,29,150, 841, . 3,29,
— sin(x) 5166, 34649, T
cos (x) A000281 V22" (2n)! 4%k 319 3~ 12
cos (2x) 1,3,57,2763,250737, 2+l S EE
1 A000364 242 ) 28 61
cos (%) 1,5,61,1385, o 561,277, | 61~ —
sin(x) + cos(3x) A006873 8"T'(n) 7 47 8
cos (4x) 1,1,7,47,497, 6241, 24 + 272 P Eh = Jatzvz w3
1+si n+2 g1 .
sin (x) A000111 2m+2 | 2517, 17 327!
cos (x) 1,1,1,2,5,16,61, 272, ... L n8
cos(x) + cos(2x) + cos (3x 2n — 2 52571 =
*) (22) (3%) 3,11,29,191,871,52571, 2 @n-2) 3,11, 29, 212 101
cos (x) (@n-1) 191,52571 —




cos(2x) + sin(2x 4n —1)!
(2x) (2x) A012393 24n (2n —1)! 1731691 691~ 211
cos (2x) 2,16,512,34816,4063232, 2n 12

We could continue these examples to find other prime numbers, these few functions are
among the simplest. In addition to isolated primes if a term is composed of 2 factors, it is
always possible to obtain a new identity as in the case of the 8™ Euler number : 1385
which is 5 - 277. Since we already have 5, this provides an approximation for 277. The
process works but it is a bit tedious to go and get any prime and illusory to find an
expression for each prime. For the moment, this short list is only a sequence of exotic
expressions giving almost a prime number.

Other forms giving prime numbers

Ramanujan found this formula with Bernoulli numbers and an unusual sum.

had 4k+1

n Bin+z
Z 2nn _ = - (2)
e 1 2(0(4n+2)

n=1

This gives for 4k + 1 = 13 the identity

oo}

nl3 1
nZl e2mn _ = 24
If k is much higher, we have
® n673
24 )~ = 1563446 ... 036059151
n=1

A prime number of 1077 digits, with the exponent 22607 we have one of 71299 digits, it
is the largest known of its kind. What is remarkable for this sum is the affinity with once
again the number 7. Remarkable also because of the exceptional precision.

Indeed, it is not difficult to establish that in general we will have this
approximation

d k
n k!
Z erm —1 (rm)k+1 ®)
n=1
So, if the result of the infinite sum is prime we will have another representation of these

approximations. If k is high, the approximation is spectacular, here with the exponent 673
has 202 exact decimals.

These sums (2) are known, what is less known is to extend the Ramanujan formula to
two terms.




Using an example with 691 we have (691 is the numerator of the 12th Bernoulli
number).

® nll ® nil
691:1623”“—1_2162—84""—1 (4)
n=1 n=1

. : . . 2%11! . .
The first sum already provides a good approximation of 691 N Again, this

approximation can be made exact by adding either the missing term or a part of the series
of the 2nd member of the equation. This equation has a strong resemblance to one given
by Jean-Pierre Serre (A course in arithmetic p.157).

65520 n
Eisg =1+ W Ull(n)q (5)
n=1

In disguise the series (2) are Eisenstein series where the variable g™ becomes e?™. The
identity (4) with 691 is just a rewriting of (5).

A summary analysis of the identity (2) and (3) shows that we have either 1 term or 2
terms which give a rational, for example

[ee] n3 [ee] n3
1=24§;ym_4f—mm2255;:7 )
n=1 n=1

We can obtain an infinity of them as (6) if the exponent is of the form 4k — 1. The
coefficients grow with k, when k = 5 we have

® nlo b nlo
221930581 = 162 o 1 224 Z oAt — 1
n=1 n=1
(7)
1946319750384384375
221930581 = = 221930369.2868....

120

But 221930581 = 31 - 41 - 283 - 617, is not prime. Again, these examples also fall into
the category of isolated exotic expressions. The approximations are very precise but there
are too few examples. So, we are limited to the few cases of primes appearing in these 2-
term sums. But there is a trick, by taking the sum or the difference of 2 different values
(different k). For example

® 7

> ns > n® < n’ 14 n
31=—504Zenn_1—32256Zm+64zeﬂn_1—2 P
n=1 n=1 n=1

n=1

Who provides the approximation

1~ 61425 321300

— 5 = 30.0299856 ...




The approximations are less spectacular here, but what we gain is generality. By
combining 4 terms of the type and with r = 1 or 4 and k odd.

x k

n
Sty = ) —m—

n=1

one can easily obtain several representations for each prime even from 3. 2 having been
obtained with Tangent numbers. Not only does it work quite well for all the primes up to
1000000 but also one can choose an arbitrary prime.

A test has been done with the first ones of the form 10™ + ¢, withm =1 up to 101. These
are the first prime numbers greater than 10™if m = 100 then ¢, = 267. It is the sequence
2,11,101, 10009, ... (the sequence A003617 of the OEIS catalog).

Example with m = 18,

5778009767428887783353934375 1246249957994342793434971153125
8 1720 8 24

1018 +3 =~

Which is 1000000676938336801.2703...

The true value of the former is

nlo nlo
— 62257831671234562

1018 +3 = 59373695062

n= 1

e™m — 1 47tn_1

23

n23
— 60258842 o + 1010975574589442

41m_1

And for each of the terms of this sum we have the approximation (3), obviously the
coefficients of the sums are prime to each other, two by two.

which can be corrected with {(k + 1) to give an even more precise rational value if k is
large, in other words

k!
S(k,r) ~ Gy S+ D) (8)

which is rational when k is odd. More exactly when k = 4n+ 1. Whenk = 4n+ 3 it
takes 2 terms in S(k,r). If we check the previous calculation we obtain the sum of 4
rationals.



67943139037162110976 518365013406083

1 18 —
07 +3 825 + 6600
248914919490662170624 118691882844287
1365 10920

There is something rather mysterious going on between equation (8) which gives a
rational and the true value of S(k, r) which is irrational except if r = 2 and Kk is of the form
4n+3 (Ramanujan formula). Here what we found is that the formula (8) gives the true
value if we take 2 terms in S(k, r). Here is an example,

We know that the following identity is true:

[ee]

n3 s n3
1= 16Ze,m_ - —256Z—em —
n=1

n=1

But knowing that S(3,1) and S(3,4) are likely to be irrational taken separately. Our
approximate formula (8) gives us S(3,1) = 1—15 and S(3,4) = ﬁ and if we add the
coefficients (here 16 and -256), we get the true value of 1. Indeed :

16(1) 256( ! )—1

15 3840/

We can see that when k is small, here 3, the approximation is not very good and despite
that, the equation becomes exact if we sum 2 terms. If k is larger, the approximation is

much better and the result of the sum of 2 terms is again exact as with the case of p =
108 + 3and k = 19 and 23.

So, with a little program using to find the coefficients (lindep of pari-GP or PSLQ in Maple)
of the sums S(k, r) for each prime, we can easily reach 1000000 in a few minutes. As the
size of the prime increases, there are more exact candidate sums and as many
approximations.

Given that the choice of the prime to represent seems arbitrary it is reasonable to
conjecture that for any prime P we have the sum

kq ® ® ks ® ks

= n nk1 n n
P:aZeTm_1+bze4rtn_1+Czerm_1+dze4rm_1 (7)
n

n=1 =1 n=1 n=1

Here k; and k, are odd and different, a, b, ¢, and d are integers. Moreover, the prime P is
approximated by

p kq! k,!
~u (rm)ka+1 Tv (rm)ke+1




Where u and v are integers too. It remains to know what S(k, r) represents exactly. From
the Ramanujan identity we can easily find those with r = 1 or 4. Bill Gosper had already
explored some of these identities, including this one
i 1 - (301 + 210v2 7Y/* + 120V7 + 90\/2_73/4)7T—2
4 e?™/7 —1 240 320 F(§)8
n= 4

This allows us to find the explicit values forr =1, 2, 4 in S(k, r).




k

Stkr) = Z?f=1er:T1 Value Approximation
c31 11 2 1 6
S 320 T(3/4)8 240 w4
(32 1 n? 1 3
(3.2) 320 T(3/4)8 240 8
34 11 n? 1 3
34 5120 I'(3/4)® 240 128 4
51 3 3 i 120
1) 64 I'(3/4)12 ' 504 6
1 15
§(:2) 504 g
S(54 -3 N 1 15
>4 212 T(3/4)12 ' 504 29 16
c71 363  n* 1 7!
7.1 2125 I'(3/4)16 480 8
<72 3 m* 1 315
(7.2) 2125 I'(3/4)16 480 24 18
c74 363  n* 1 315
(7:4) 2175 T'(3/4)'6 480 212 6
189 n° 1 9!
SO 25 T(3/H)2 ' 264 10
1 2835
SO2) 264 g1
189 7w 1 2835
SO 218 T(3/5)% ' 264 213 10
c111 393309 691 11!
LD 66560 T'(3/4)%* 65520 12
S(112) 189 7S 691 155925
’ 66560 I'(3/4)2* 65520 24 12
S(114) 393309  n° 691 155925
s 222513 I(3/4)%* 65520 216 12
68607 1 13!
SA3) 210 T(3/4)28 24 4




1 6081075
S$(13,2) n Ty
68607 ’ 1 6081075

S(13,4) 224 [(3/4)28 + 24 218 ;14
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Appendix

Table of approximations of primes from 2.

Prime Approximation Value
2 g 2.0121
ﬂ4
103 184275 + 2972025 102.2651
8 m® 4 8
163 798525 + 2168775 160.9663
8 m® 4 78

~
~

5778009767428887783353934375 |
1

1018 + 3 - 8 7720 1000000676938336801.2703
1246249957994342793434971153125
871'24
Raw table

Prime, S(k,1),S(k,4) [vector that makes the sum = 0 | Approximation
Example

7 = —2285(5,1) + 58368 S(5,4) + 33 S(7,1) + 33792 S(7,4)

4578525 N 95893875
T 8478 8 10

7, 7, 9, [-1, -228, 58368, 33, 33792], -4578525/4/Pi~8+95893875/8/Pi"10
23

., 5, 7, [-1, 63, 4032, 28, -7168], 61425/8/Pi"6+562275/4/Pi"8
29, 5, 7, [-1, 126, 8064, 24, -6144] , 61425/4/Pi~6+240975/2/Pi"8
31, 5, 7, [-1, 504, 32256, -64, 16384], 61425/Pi~6-321300/Pi”"8
31, 7, 9, [-1, -424, 108544, 66, 67584] -4257225/2/Pi~8+95893875/4/Pi~10
41, 5, 7, [-1, 252, 16128, 16, -4096], 61425/2/Pi~6+80325/Pi"8
47, 5, 7, [-1, 315, 20160, 12, -3072], 307125/8/Pi~6+240975/4/Pi"8
53, 5, 7, [-1, 378, 24192, 8, -2048], 184275/4/Pi~6+80325/2/Pi"8
59, 5, 7, [-1, 441, 28224, 4, -1024], 429975/8/Pi~6+80325/4/Pi"8
71, 5, 11, [-1, 1890, 120960, -4, 16384], 921375/4/Pi~6-638512875/4/Pi~12
71, 5, 7, [-1, 567, 36288, -4, 1024], 552825/8/Pi”~6-80325/4/Pi"8
89, 5, 7, [-1, 756, 48384, -16, 4096], 184275/2/Pi”6-80325/Pi"8
89, 7, 9, [-1, -556, 142336, 99, 101376], -11165175/4/Pi”~8+287681625/8/Pi”~10
97, 3, 9, [-1, -498, 7968, 33, 33792], -11205/4/Pi~4+95893875/8/Pi~10
97, 5, 7, [-1, 126, 8064, 152, -38912], 61425/4/Pi"6+1526175/2/Pi"8
103, 5, 7, [-1, 189, 12096, 148, -37888], 184275/8/Pi~6+2972025/4/Pi"8
109, 5, 7, [-1, 252, 16128, 144, -36864], 61425/2/Pi~6+722925/Pi"8
109, 7, 9, [-1, -36, 9216, 33, 33792], -722925/4/Pi”~8+95893875/8/Pi~10
113, 3, 9, [-1, -242, 3872, 33, 33792], -5445/4/Pi~4+95893875/8/Pi~10
113, 5, 7, [-1, 1008, 64512, -32, 8192], 122850/Pi”6-160650/Pi"8
127, 5, 11, [-1, 315, 20160, 2, -8192], 307125/8/Pi~6+638512875/8/Pi"12
127, 5, 7, [-1, 441, 28224, 132, -33792], 429975/8/Pi~6+2650725/4/Pi"8
131, 3, 9, [-1, 46, -736, 33, 33792], 1035/4/Pi"4+95893875/8/Pi"10
131, 5, 7, [-1, 126, 8064, 216, -55296], 61425/4/Pi~6+2168775/2/Pi"8
137, 3, 9, [-1, 142, -2272, 33, 33792], 3195/4/Pi"4+95893875/8/Pi"10
137, 5, 7, [-1, 189, 12096, 212, -54272], 184275/8/Pi"6+4257225/4/Pi"8
139, 5, 11, [-1, 3087, 197568, -6, 24576], 3009825/8/Pi”~6-1915538625/8/Pi"12
139, 5, 7, [-1, 567, 36288, 124, -31744], 552825/8/Pi~6+2490075/4/Pi"8
149, 3, 9, [-1, 334, -5344, 33, 33792], 7515/4/Pi"4+95893875/8/Pi"10
149, 5, 7, [-1, 315, 20160, 204, -52224], 307125/8/Pi"6+4096575/4/Pi"8
151, 3, 9, [-1, 366, -5856, 33, 33792], 8235/4/Pi"4+95893875/8/Pi"10
151, 5, 7, [-1, 693, 44352, 116, -29696], 675675/8/Pi"6+2329425/4/Pi"8
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157, 3, 9, [-1, 462, -7392, 33, 33792], 10395/4/Pi~4+95893875/8/Pi~10

157, 5, 7, [-1, 756, 48384, 112, -28672], 184275/2/Pi"6+562275/Pi"8

157, 7, 9, [-1, -428, 109568, 99, 101376], -8594775/4/Pi"8+287681625/8/Pi"~10
163, 3, 9, [-1, 558, -8928, 33, 33792], 12555/4/Pi~4+95893875/8/Pi~10

163, 5, 7, [-1, 819, 52416, 108, -27648], 798525/8/Pi”"6+2168775/4/Pi"8

167, 7, 9, [-1, -168, 43008, 66, 67584], -1686825/2/Pi~8+95893875/4/Pi~10
167, 9, 11, [-1, 132, 135168, -8, 32768], 95893875/2/Pi~10-638512875/2/Pi"12
173, 3, 9, [-1, 718, -11488, 33, 33792], 16155/4/Pi~4+95893875/8/Pi~10

179, 3, 9, [-1, 814, -13024, 33, 33792], 18315/4/Pi~4+95893875/8/Pi~10

181, 3, 9, [-1, 846, -13536, 33, 33792], 19035/4/Pi~4+95893875/8/Pi~10

181, 5, 7, [-1, 1008, 64512, 96, -24576], 122850/Pi”6+481950/Pi"8

191, 5, 7, [-1, 756, 48384, 176, -45056], 184275/2/Pi”~6+883575/Pi"8
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