Les chiffres

1, 2, 3, 5 et la suite Simon Plouffe

Assez difficile de faire plus numérique que des chiffres...

- Au début, au siècle des lumières (1700-1800), la science mathématique subissait une métamorphose avec la découverte du calcul numérique.
- On s'est aperçu qu'en tabulant une fonction on pouvait prédire quelque chose.
- Mais avant on faisait comment ? Essentiellement des rapports géométriques issus de la géométrie classique (Euclide et autres grecs).
- C'est au courant de 1600 que sont apparues les premières tables de logarithmes, et à peu près à la même époque les règles à calcul.

Table de logarithme ? Règle à Calcul ?

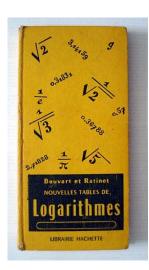


Table de logarithme Bouvart et Ratinet (1905) et encore utilisée en 1980 Napier 1614 d'où le nom de logarithmes népériens.

```
      N
      0
      1
      2
      3
      ...

      10
      0000
      0043
      0086
      0128
      ...

      11
      0414
      0453
      0492
      0531
      ...

      12
      0792
      0828
      0864
      0899
      ...

      13
      1139
      1173
      1206
      1239
      ...

      14
      1461
      1492
      1523
      1553
      ...

      15
      1761
      1790
      1818
      1847
      ...

      16
      2041
      2068
      2095
      2122
      ...

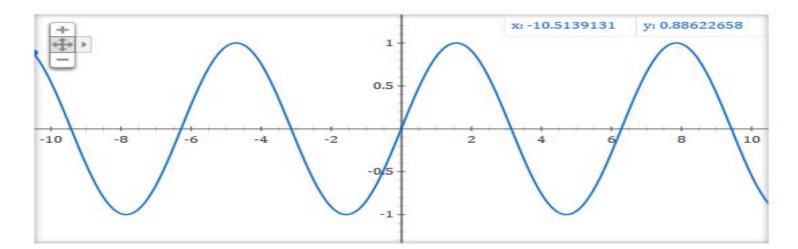
      17
      2304
      2330
      2355
      2380
      ...

      18
      2553
      2577
      2601
      2625
      ...

      19
      2788
      2810
      2833
      2856
      ...
```

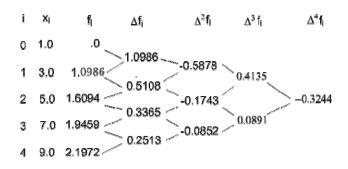

On les utilisait pour les calculs astronomiques, financiers.

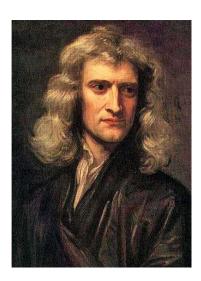
Donc on savait calculer une fonction comme sinus



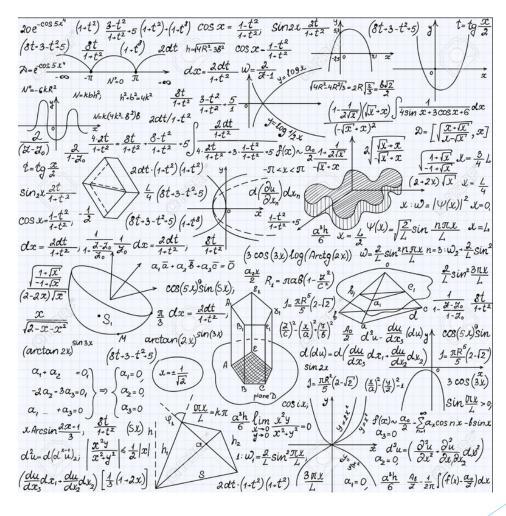
Mais c'est Newton qui a systématiquement mathématisé le procédé

Différences de Newton

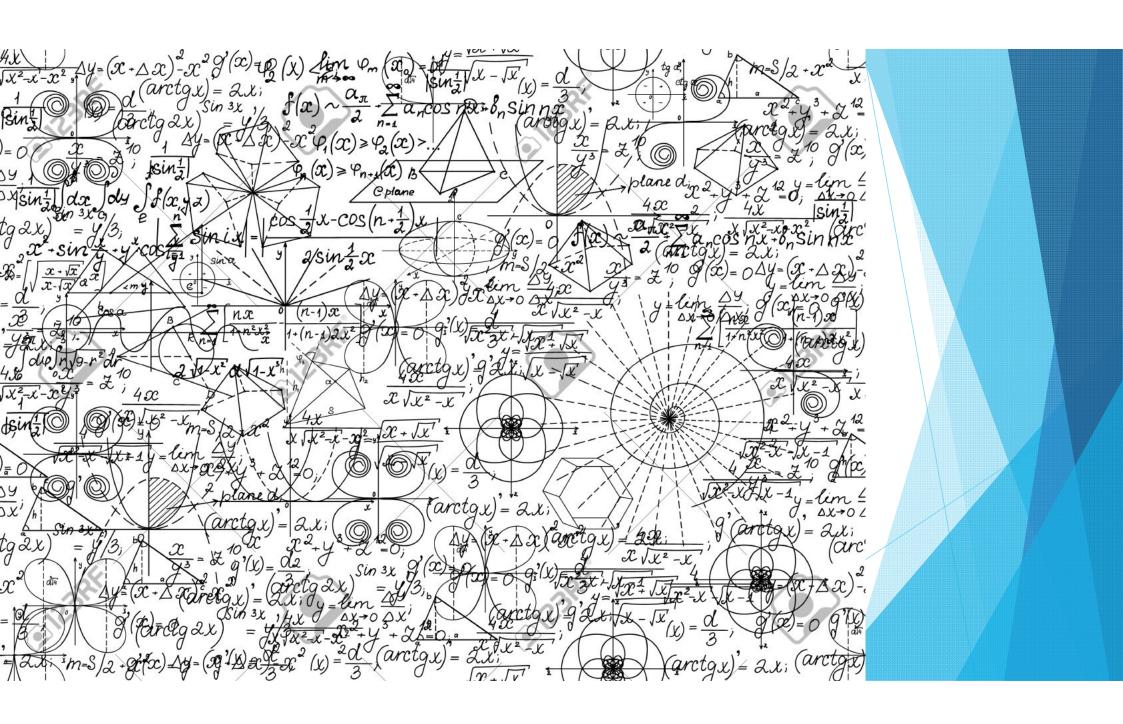




Et puis arriva l'analyse mathématique



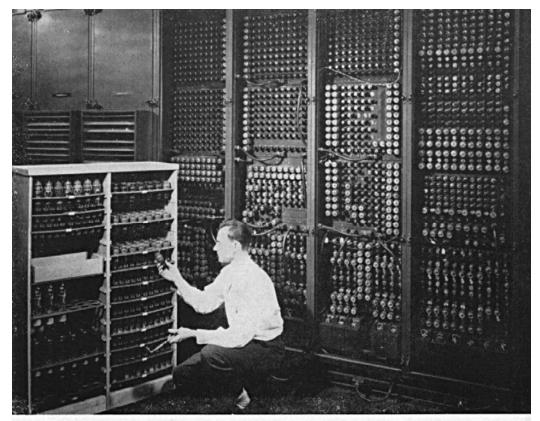
 $0-2-x^{2}-12x+18=0 \atop d=18c+x\ln a^{2}$ $d=18c+x\ln a^{2}$ $(e^{x})''(x^{2}+13)^{2}-x^{4}$ $(e^{x$ $y = \frac{(x+16)}{(x^2+138)}$ $\frac{D^{2}}{C^{2}} \stackrel{?}{\ell} \stackrel{?}{\sim} \stackrel{?}{\circ} \stackrel{?}$ $r_n(x) = \ln \alpha^2$; $\int dx = 2x + y + 1 = 0$, $e^3 = x \ln a^2 + d \cdot 3x^2 + 15c$; [xy=ay-x+1=0; Ssin(2-3x)dx $f = \frac{g\ell^{8}}{FI_{u}^{4}} (2+\alpha)^{2} \quad y' = (2x)^{3} (5x)^{4} (7x^{2})^{4} (4)^{4} + 2x^{3};$ $y = 2x^{3} - 5x^{2} + 7x - 4 - 2; -1 - 3; (-4, 5, -3)$ $W = (\S, p, \S) = \frac{m}{r} \iint \frac{dxdy}{|\cos y|}$ W=(S, D, S)= Spas $(\sin 3x)^2(\sin)^3x$ $\sqrt[3]{t-x}, \frac{1}{\cos(u/a)}$ A4 3x - (8x): sin x2 $\sqrt{A_2}' 8y^{5x} + x^5 - 16 2xe^{x} = (e^{x})' + e^{x};$ -2(-2) -2' $\int \frac{dx}{6-3x} \frac{H_{1}}{3} \frac{3\cos 3x}{3}, \int \frac{\sin 3x}{\cos 3x} dy, 15m^{3}, S_{1}m_{1} 3e^{3\cos 3x}$ 20052X $\int_{-\infty}^{\infty} \frac{1}{12} \int_{-\infty}^{\infty} \frac{1}{(n+1)!} \int_{-\infty}^{\infty} \frac{1}{12} \int_{-\infty}^{\infty} \frac{1}{(n+1)!} \int_{-\infty}^{\infty} \frac$ Sem (3-22) dx; 2cos2x 1 12 $\frac{3x}{12} = \frac{3x}{12}$ $\frac{3x}{12} = \frac{3$



Et jusqu'à tout récemment, on a procédé de cette façon.

- À un phénomène donné, on peut calculer la trajectoire d'une planète, l'heure des marées (et la trajectoire d'un obus)...
- Et arriva l'ENIAC en 1948 : Sa première tâche a été de :
- Calculer le nombre $\pi = 3,14159$... et le nombre e = 2,71828182845 ... (base des logarithmes naturels) à 2000 décimales.
- ENIAC = Electronic Numerical Integrator Analyzer and Calculator.
- 17468 tubes, 70000 résistances, 10000 condensateurs.
- 30 tonnes, 2,4 × 0,9 × 30,5 mètres, sur 167 mètres carrés et qui bouffe 150 KW d'électricité, un monstre.
- ▶ 5000 additions par seconde, 357 multiplications ou 38 divisions par seconde (seulement).

ENIAC 1948



Replacing a bad tube meant checking among ENIAC's 19,000 possibilities.

Malgré sa taille, il calculait vite...

Moyen employé	Vitesse de multiplication de nombres de 10 chiffres	Calcul d'une trajectoire d'une table de tir	
Homme à la main, ou machine de Babbage	5 min	2,6 jours	
Homme avec calculateur de bureau	10 à 15 secondes	12 heures	
Harvard Mark I (électromécanique)	3 secondes	2 heures	
Model 5 (électromécanique)	2 secondes	40 minutes	
Analyseur différentiel (analogique)	1 seconde	20 minutes	
Harvard Mark II (électromécanique)	0,4 s	15 minutes	
ENIAC (électronique)	0,001 s	3 secondes	

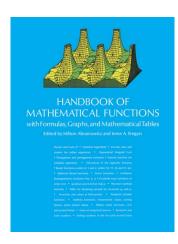
Table extraite du livre 'Handbook of Mathematical Functions 1964

MATHEMATICAL CONSTANTS

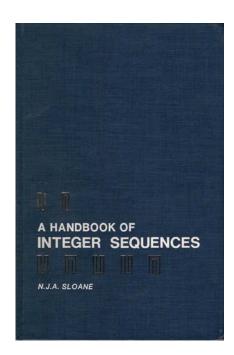
3

TABLE 1.1. MATHEMATICAL CONSTANTS—Continued

n		$\ln n$		n		$\log_{10} n$	
47 53	3. 8501 3. 9702	47601 71005 91913 55212	85868 209507 18341 444691	47	1. 6720	97857 93571	74644 14219
59	4. 0775	37443 90571	18341 444691 94506 160504	53 59	1. 7242 1. 7708	75869 60078 52011 64214	90456 32992 41902 60656
61	4. 1108	73864 17331	12487 513891	61	1. 7853	29835 01076	70338 85749
67 71	4. 2046	92619 39096	60596 700720	67	1. 8260	74802 70082	64341 49132
73	4. 2626 4. 2904	79877 04131 59441 14839	54213 294545 11290 921089	71 73	1. 8512	58348 71907	52860 92829
79	4. 3694	47852 46702	14941 729455	79	1. 8633 1. 8976	22860 12045 27091 29044	59010 74387 14279 94821
83	4. 4188	40607 79659	79234 754722	83	1. 9190	78092 37607	39038 32760
89 97	4. 4886	36369 73213	98383 178155	89	1. 9493	90006 64491	27847 23543
97	4. 5747	10978 50338	28221 167216	97	1. 9867	71734 23624	48517 84362
$\ln \pi$	1. 1447	29885 84940	01741 43427	log ₁₀ # ((-1) 4. 9714	98726 94133	85435 12683
$\ln \sqrt{2\pi}$	(-1) 9. 1893	85332 04672	74178 03296		(-1) 4. 3429	44819 03251	82765 11289
n		n ln 10		n		$n\pi$	
1	2, 3025	85092 99404	56840 17991	1	3. 1415	92653 58979	32384 62643
2	4. 6051	70185 98809	13680 35983	2	6. 2831	85307 17958	64769 25287
3 4	6. 9077	55278 98213	70520 53974	3 4 (9. 4247	77960 76937	97153 87930
5	9. 2103 (1) 1. 1512	40371 97618 92546 49702	27360 71966 28420 08996	5 ((1) 1. 2566 (1) 1. 5707	37061 43591 96326 79489	72953 85057 66192 31322
6	(1) 1. 3815	51055 79642	74104 10795	6 ((1) 1.8849	55592 15387	59430 77586
7	(1) 1.6118	09565 09583	19788 12594	7 ((1) 2. 1991	14857 51285	52669 23850
8	(1) 1.8420 (1) 2.0723	68074 39523 26583 69464	65472 14393	8 ((1) 2. 5132 (1) 2. 8274	74122 87183 33388 23081	45907 70115
9	(1) 2.0728	26583 69464	11156 16192	9 ((1) 2.02/4	00000 20001	39146 16379
n		π^n		n		π^{-n}	
1	3. 1415	92653 58979	32384 62643		-1) 3. 1830	98861 83790	67153 77675
2 3	9. 8696	04401 08935	86188 34491		-1) 1.0132	11836 42337	77144 38795
4	(1) 3, 1006 (1) 9, 7409	27668 02998 09103 40024	20175 47632 37236 44033		-2) 3. 2251 -2) 1. 0265	53443 31994 98225 46843	89184 42205 35189 15278
5	(2) 3. 0601	96847 85281	45326 27413		-3) 3. 2677	63643 05338	54726 28250
6	(2) 9. 6138	91935 75304	43703 02194		-3) 1.0401	61473 29585	22960 89838
7 8	(3) 3, 0202 (3) 9, 4885	$93227 77679 \\ 31016 07057$	20675 14206 40071 28576		-4) 3.3109 -4) 1.0539	36801 77566 03916 53493	76432 59528 66633 17287
			40071 28576	0 (- 47 I. U009	09490 01490	00000 1/28/
9	(4) 2, 9809	09933 34462	11666 50940	9 (-5) 3, 3546	80357 20886	91287 39854



En 1973, Neil J.A. Sloane publie 200 pages de chiffres



361 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58, 61, 64, 65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106 THE SUM OF 2 SQUARES. REF EUL (1) 1 417 11. KNAW 53 872 50.

362 1, 2, 4, 5, 8, 9, 12, 14, 17, 18, 23, 24, 27, 30, 34, 35, 40, 41, 46, 49, 52, 53, 60, 62, 65, 68, 73, 74, 81, 82, 87, 90, 93, 96, 104, 105, 108, 111, 118, 119, 126, 127, 132, 137 A NUMBER-THEORETIC FUNCTION. REF DVSS 2 281 1884.

363 1, 2, 4, 5, 8, 10, 14, 15, 16, 21, 22, 25, 26, 28, 33, 34, 35, 36, 38, 40, 42, 46, 48, 49, 50, 53, 57, 60, 62, 64, 65, 70, 77, 80, 81, 83, 85, 86, 90, 91, 92, 100

PRIME NUMBERS OF MEASUREMENT. REF PCPS 21 654 23.

364 1, 2, 4, 5, 8, 12, 19, 30, 48, 77, 124, 200, 323, 522, 844, 1365, 2208, 3572, 5779, 9350, 15128, 24477, 39604, 64080, 103683, 167762, 271444, 439205, 710648, 1149852 A(N) = A(N-1) + A(N-2) - 1. REF JA2 97.

365 1, 2, 4, 5, 10, 14, 17, 31, 41, 73, 80, 82, 116, 125, 145, 157, 172, 202, 224, 266, 289, 293, 463

15.2**N - 1 IS PRIME. REF MTAC 23 874 69.

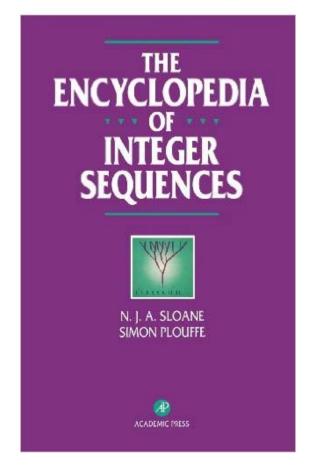
366 1, 2, 4, 5, 10, 19, 36, 68, 138 BORON TREES. REF CAY 9 451.

367 1, 2, 4, 5, 14, 14, 39, 42, 132, 132, 424, 429, 1428, 1430, 4848, 4862, 16796, 16796, 58739, 58786, 208012, 208012, 742768, 742900, 2674426, 2674440, 9694416 DISSECTIONS OF A POLYGON. REF GU1.

368 1, 2, 4, 6, 3, 10, 25, 12, 42, 8, 40, 202, 21 FROM SEDLACEKS PROBLEM ON SOLUTIONS OF X + Y = Z. REF GU8.

369 1, 2, 4, 6, 7, 10, 11, 12, 22, 23, 25, 26, 27, 30, 36, 38, 42, 43, 44, 45, 50, 52, 54, 58, 59, 70, 71, 72, 74, 75, 76, 78, 86, 87, 91, 102, 103, 106, 107, 108, 110, 116, 118, 119 ELLIPTIC CURVES. REF JRAM 212 25 63.

Et en 1995, avec 550 pages de chiffres



Le OEIS (1996), 2 personnes en 1995, 3000 en 2016, 278000 suites de nombres

This site is supported by donations to The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

e make a <u>donation</u> (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this the help of the OEIS".

The On-Line Encyclopedia of Integer Sequences® (OEIS®)

Enter a sequence, word, or sequence number:

1,2,3,6,11,23,47,106,235

Search <u>Hints</u> <u>Welcome</u> <u>Video</u>

For more information about the Encyclopedia, see the Welcome page.

Mais en fait, toutes ces formules (et les tables qui viennent avec) sont toutes faites de la même façon.

D'une formule donnée on a une série de chiffres qui représentent ce que la fonction est à ce point.

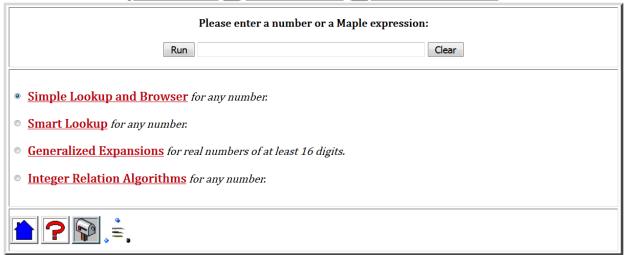
$$\frac{\frac{itm_{n\to\infty}\frac{2^{2n}(n!)^2log7}{(2n)!\sqrt{n}}}{\int_0^{\infty}e^{-t^2}dt}_{-e^{i\sum_{k=0}^{\infty}\frac{8\pi}{(4k+1)(4k+3)}}} = 50$$

▶ Il y a la formule à gauche -> résultat ou série de chiffres à droite.

Mais si on pose la question : Comment faire pour aller de droite à gauche ?

Le Inverse Symbolic Calculator, Vancouver, juillet 1995, 12 millions de constantes.

INVERSE SYMBOLIC CALCULATOR



Expressions that are **not** numeric like $\ln(Pi^*sqrt(2))$ are evaluated in <u>Maple</u> in symbolic form first, followed by a floating point evaluation followed by a lookup.

```
3141591706703055 = (0131) sum(1/(2*n^2-2*n+13), n=1...inf)
3141591746153406 = (0258) F(10/11.5/11:7/9.4/9:1)
3141591773236929 = (0261) 1+2*x-4*x^2+3*x^4+2*x^5
3141591936381883 = (0326) 11^{(1/3)*(2^{(2/3)}-3)}
3141592126650245 = (0131) sum(1/(37*n^2-30*n+67), n=1...inf)
3141592211352067 = (0001) Bernstein^GAM(1/12)-Pi
3141592227548461 = (0001) Pi-exp(-Pi)^Feiq1
3141592434690729 = (0261) -5+5*x+2*x^2+4*x^3-5*x^4-2*x^5
3141592475846874 = (0001) Pi-sin(Pi/12)^GAM(1/12)
3141592628153719 = (0001) Pi-exp(-Pi)^GAM(1/6)
3141592639293414 = (0001) Pi-exp(-1/2*Pi)^GAM(1/12)
3141592653589793 = (0000) Pi
3141592653589793 = (0001) 1/2*GAM(1/6)*GAM(5/6)
3141592653589793 = (0001) GAM(1/4)/sr(2)*GAM(3/4)
3141592653589793 = (0001) GAM(1/6)*GAM(5/6)-Pi
3141592653589793 = (0001) \cos(Pi/12)*GAM(5/12)*GAM(7/12)
3141592653589793 = (0001) \exp(gamma)^{\ln(Pi)/gamma}
3141592653589793 = (0001) \sin(Pi/12)*GAM(11/12)*GAM(1/12)
3141592653589793 = (0141) Psi(1/4)-Psi(3/4)
3141592653589793 = (0396) A000796 from Enc. of Int. Seq.
3141592653589793 = (0397) sum(A007514(n)/(n-1)!) from E.I.S.
3141592653766556 = (0405) ln(Parking+Madelung)
3141592667886172 = (0001) Pi+exp(-1/2*Pi)^GAM(1/12)
3141592679025866 = (0001) Pi+exp(-Pi)^GAM(1/6)
3141592790518436 = (0001) \exp(Pi) + Khint*GAM(7/24)
3141592831332712 = (0001) Pi+sin(Pi/12)^GAM(1/12)
3141592920353982 = (0399) 71/226
3141593079631124 = (0001) \exp(-Pi)^Feig1+Pi
3141593095827519 = (0001) Pi+Bernstein^GAM(1/12)
3141593167750063 = (0008) sum((8/3*n^3-31/2*n^2+287/6*n-16)/n^n,n=1...inf)
3141593615816239 = (0011) sum((5/2*n^3-4*n^2+7/2*n+21)/(n!+2), n=1...inf)
3141593656148726 = (0001) Pi+exp(-Pi)^GAM(5/24)
3141593769945568 = (0001) Pi+GaussK^GAM(1/12)
```

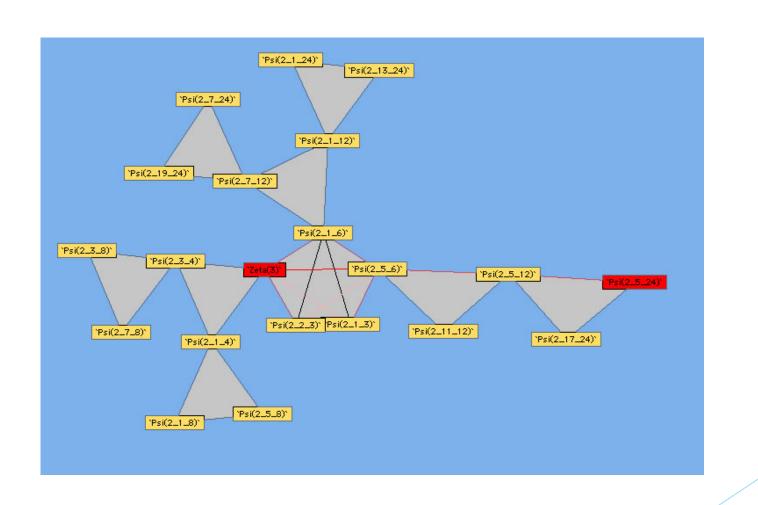
1998, l'Inverseur de Plouffe 200 millions de constantes

Copie en Australie 2001, 54 millions de constantes

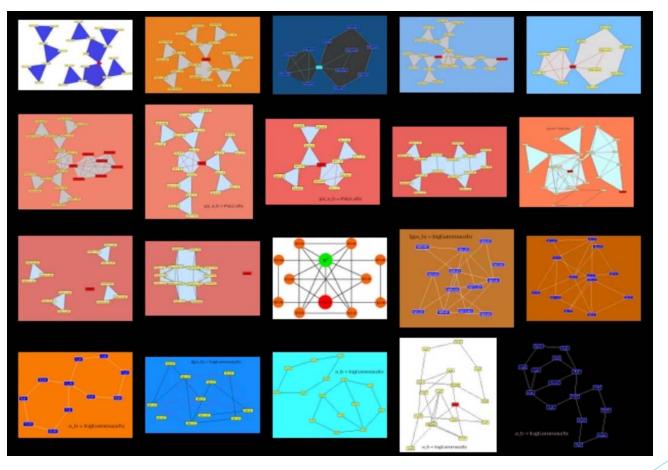
Inverseur de Plouffe (2016)

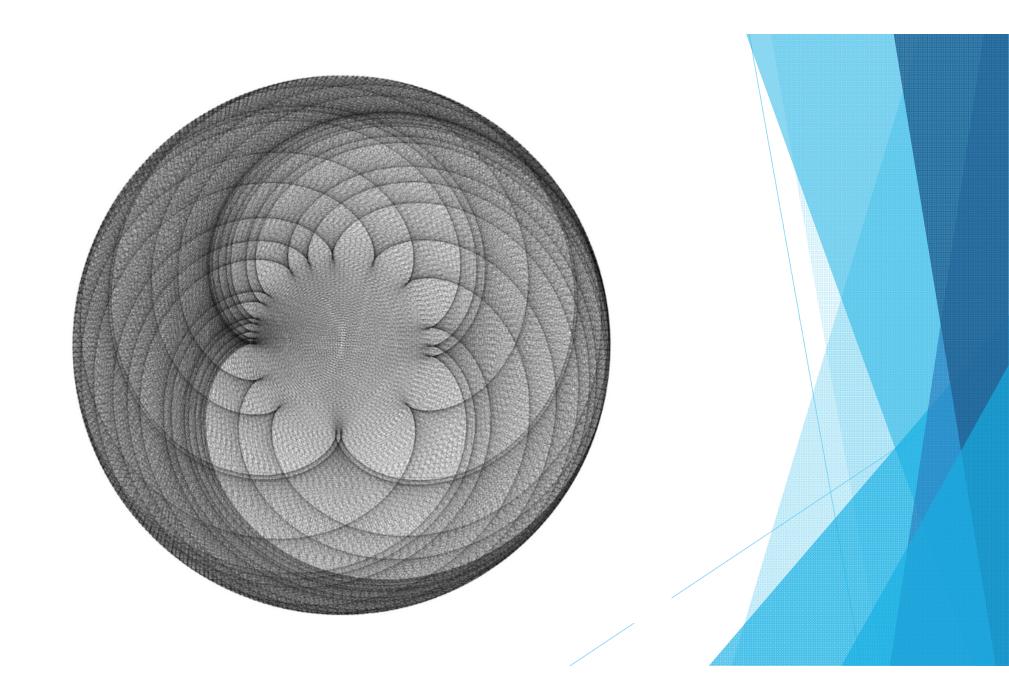
- 17,3 TB de chiffres (plusieurs inverseurs).
- ▶ 16 120 000 000 de constantes à 64 décimales
- 3,06 milliards de constantes à 32 décimales http://plouffe.fr/ip/
- Ça ressemble à ceci :

```
50320000257497674922482298719135 a003 sin(Pi*23/66)/cos(Pi*51/115)
50320000283141325986375419272560 s002 sum(A021891[n]/(binomial(2*n,n)*n^4*5^n),n=1..infinity)
50320000299457417829230177008734 a015 Real Root of -x^15+x^14-x^12+x^11-x^9-x^7-x^6-x^5-x^4-x^3-x^2+x
50320000441140589575284647039369 m001 (LambertW(1)-exp(1/Pi))/(-ErdosBorwein+ZetaQ(4))
50320000458534998108646748710839 \text{ v021 sum}(1/\text{binomial}(2*n,n)/(7/2*n^3-35/2*n^2+88*n-73),n=1...\text{infinity})
50320000507560798423029805602606 q005 GAMMA(1/11)*Pi*csc(1/10*Pi)/GAMMA(9/10)*GAMMA(3/7)/GAMMA(2/9)
50320000525349631557371992649512 \text{ r}009 \text{ Im}(z^3+c), c=-1/52+29/46*I, n=48
50320000566094356003815388714842 m020 7/3*exp(3*Pi)+91/2*exp(2*Pi)-791/6*exp(Pi)+92
50320000639625416554532600032438 h028 log(hypergeom([1/2,5/8],[7/6,31/12,31/12],1/8))
50320000649793744271048552683812 r009 Im(z^3+c),c=-1/4+20/33*I,n=22
50320000702546384845236101553430 m018 95/2*Pi^2+55/2*Pi-52
50320000760941316687852372680400 r009 Im(z\3+c),c=-13/42+31/50\text{\def}1,n=23
50320000837943528041481632716199 a007 Real Root Of 376*x^4-648*x^3-838*x^2-943*x-369
50320000838554577529946451549654 m001 Backhouse*(BesselI(0,2)+Salem)
50320000875430626937067971794318 r005 Im(z^2+c).c=-71/54+1/56*I.n=11
50320000909938180692069058637998 r008 a(0)=5,K{-n^6,-87-31*n^3+38*n^2+48*n}
50320001019336409493709821248244 s002 sum(A221554[n]/(binomial(2*n.n)*n^4*5^n).n=1..infinity)
50320001125612129264306592050486 h028 log(hypergeom([1/10,1/8],[17/10,19/8,31/12],5/12))
50320001167159712473810165127033 m021 17/3/Pi^3+6/Pi^2-26/3/Pi+7
50320001273173208103138598165576 m001 Zeta(1,2)^2*Riemann2ndZero^2*exp(sin(Pi/12))
```



Et ça sert à trouver ça





Zéros de la fonction Zeta

Des formules (?) pour les masses des particules élémentaires.

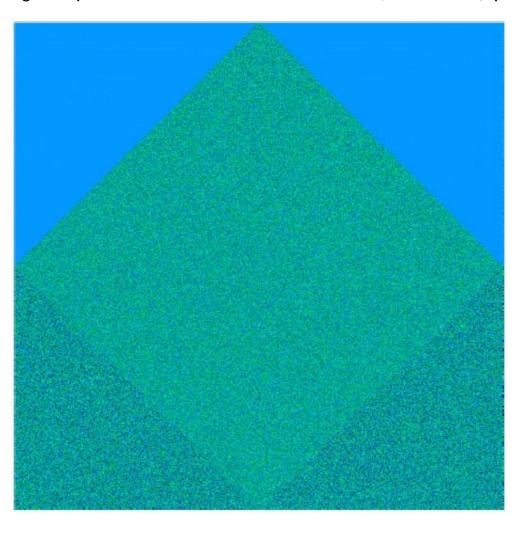
A formula for the proton/electron mass ratio:

$$\frac{1}{5\cosh(\pi)} + 6\pi^5 + \frac{1}{5\sinh(\pi)} = 1836.15267996686153\dots$$

$$\frac{M_n}{M_p} \approx \frac{8}{27} \left(\frac{5}{\cos(\frac{\pi}{15})} - \sqrt{3} \right) = 1.001378419779635280...$$

$$\cos\left(\frac{\pi}{15}\right) = \frac{1}{8}(-1 + \sqrt{5} + \sqrt{6(5 + \sqrt{5})})$$

Nombre algébrique à 270 millions de décimales (en binaire) particulier



Ou d'autres particulières

1992:
$$e^{\pi} - \pi = 19.999099979 \dots$$

$$1995: \pi = \sum_{k=0}^{\infty} \frac{1}{16^k} \left(\frac{4}{8k+1} - \frac{2}{8k+4} - \frac{1}{8k+5} - \frac{1}{8k+6} \right)$$

$$\sum_{n=1}^{\infty} \frac{n^3}{e^{2\pi n/7} - 1} = 10.00000000000000190161767888663 \dots$$

$$\pi = 72 \sum_{n=1}^{\infty} \frac{1}{n(e^{\pi n} - 1)} - 96 \sum_{n=1}^{\infty} \frac{1}{n(e^{2\pi n} - 1)} + 24 \sum_{n=1}^{\infty} \frac{1}{n(e^{4\pi n} - 1)}$$

$$\frac{1}{\pi} = 8 \sum_{n=1}^{\infty} \frac{n}{e^{\pi n} - 1} - 40 \sum_{n=1}^{\infty} \frac{n}{e^{2\pi n} - 1} + 32 \sum_{n=1}^{\infty} \frac{n}{e^{4\pi n} - 1}$$

$$\zeta(5) = \frac{694}{204813} \pi^5 - \frac{6280}{3251} \sum_{n=1}^{\infty} \frac{1}{n^5 (e^{4\pi n} - 1)} + \frac{296}{3251} \sum_{n=1}^{\infty} \frac{1}{n^5 (e^{5\pi n} - 1)} - \frac{1073}{6502} \sum_{n=1}^{\infty} \frac{1}{n^5 (e^{10\pi n} - 1)} + \frac{37}{6502} \sum_{n=1}^{\infty} \frac{1}{n^5 (e^{20\pi n} - 1)} + \frac{1073}{6502} \sum_{n=1}^{$$

$$\zeta(5) = \frac{11\pi^5\sqrt{3}}{5670} + 2\sum_{n=1}^{\infty} \frac{1}{n^5(e^{\sqrt{3}\pi n} - 1)} - \frac{33}{8}\sum_{n=1}^{\infty} \frac{1}{n^5(e^{\sqrt{12}\pi n} - 1)} + \frac{1}{8}\sum_{n=1}^{\infty} \frac{1}{n^5(e^{\sqrt{48}\pi n} - 1)}$$

$$\zeta(3) = \frac{13\pi^3\sqrt{3}}{45} + 2\sum_{n=1}^{\infty} \frac{1}{n^3(e^{\sqrt{3}\pi n} - 1)} - \frac{9}{2}\sum_{n=1}^{\infty} \frac{1}{n^3(e^{2\sqrt{3}\pi n} - 1)} + \frac{1}{2}\sum_{n=1}^{\infty} \frac{1}{n^3(e^{4\sqrt{3}\pi n} - 1)}$$

$$\zeta(5) = \frac{5\pi^5\sqrt{7}}{3906} + \frac{64}{31}\sum_{n=1}^{\infty}\frac{1}{n^5(e^{\sqrt{7}\pi n}-1)} + \frac{130}{31}\sum_{n=1}^{\infty}\frac{1}{n^5(e^{\sqrt{28}\pi n}-1)} - \frac{4}{31}\sum_{n=1}^{\infty}\frac{1}{n^5(e^{\sqrt{112}\pi n}-1)}$$