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We outline an approach for the computation of a good can-
didate for the generating function of a power series for which
only the first few coefficients are known. More precisely, if the
derivative, the logarithmic derivative, the reversion, or another
transformation of a given power series (even with polynomial
coefficients) appears to admit a rational generating function,
we compute the generating function of the original series by
applying the inverse of those transformations to the rational
generating function found.

1. INTRODUCTION

We address the problem of �nding the generating
function f�x� of a power series

��x� � a� � a�x � a�x
� � � � �� anx

n � � � � �

of which we know only a limited number of ini�
tial terms� We say that ��x� has precision n if all
coe	cients up to xn are known� Clearly
 in the
absence of additional information
 the knowledge
of ��x� to any �nite precision is not su	cient to
determine f�x� uniquely�

One instance when the problem can be solved
is when f�x� is known a priori to be a rational
function

p� � p�x � � � �� pjx
j

q� � q�x � � � �� qkxk
with pj� qk �� �� �����

and the precision of ��x� is at least j � k� Many
good algorithms exist for computing f�x� in this
case� A naive one is to use the method of indeter�
minate coe	cients in �����
 with j � k � n� Better
algorithms make use of �for example� Pad
e approx�
imants� The function convert�ratpoly provided
by the computer algebra system Maple �Char et al�
����� includes the Pad
e approximants method�
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If we don�t know that the generating function
is rational
 we can still apply a rational function
approximation algorithm to ��x�
 to obtain an ex�
pression of the form ����� whose Taylor expansion
coincides with ��x� throughout the known terms�
If we �nd out that k � j is much less than the
precision n
 we can consider the rational fraction
obtained a good candidate for the generating func�
tion f�x�� The greater n is with respect to j � k

the more con�dent we can be in our guess�

Our purpose here is to show that one can easily
extend the class of series for which a good can�
didate for a generating function can explicitly be
computed from the knowledge of just enough terms
of a series� The main idea is to try to transform
the series into one that admits a rational generat�
ing function� If this transformation is successful

in the sense that the result appears to be rational

one need only apply the inverse transformation to
the resulting rational function in order to produce
an explicit candidate for the generating function of
the original series� Thus
 a measure of rationality
for series is crucial to our scheme�

Using this idea
 we wrote a Maple program that
will �nd generating functions such as

tanx� exp�tex � t�� ��� �x������

exp

�
��p�� �xt

x
� t

�
and

�

�� xeA�x�
�

where A�x� is the solution to the functional equa�
tion A�x� � x expA�x��and even more complex
ones� The program is described in Section �
 and
examples are given in Section � that show it to be
surprisingly successful� It typically gives results in
a few seconds on a Mips����� or on a Macintosh
IIfx� Moreover
 it works with series whose coef�
�cients are polynomials or rational functions
 as
well as numbers� the generating function in such
cases involves a formal parameter
 as in the case
of exp�tex � t� above
 which arises in connection
with Stirling polynomials of the second kind �see
Example � in Section ���

2. THE PROGRAM

The heart of the program is a test for the exis�
tence of a good rational function approximation
����� for a given series
 where good is de�ned to
mean that k � j is less than the precision n of the

series� This rationality test is implemented in the
function testrat
 which returns either the ratio�
nal function that has been found
 or the keyword
FAIL�

The power of the program lies in the associa�
tion of this rationality test with operations such as
di�erentiation
 logarithmic di�erentiation and re�
version� �Recall that a series

��x� � a� � a�x � a�x
� � � � �� anx

n � � � �

with a� � � and a� �� � has a unique reversion

�h��i�x�
 that is
 a series satisfying �h��i���x�� �
x� The generating function of �h��i�x� is inverse
to the generating function of ��x�
 and the �rst n
terms of �h��i�x� depend only on the �rst n terms
of ��x�� The logarithmic derivative of a series ��x�
is ���x����x���

In general
 the �rst step of a computation is to
execute some transformation � on a given series
��x�
 then to test the resulting series for rational�
ity� If ����x�� admits a good rational generating
function f�x�
 the program computes ����f�x��

where ��� is the transformation inverse to �� Note
that some operations �
 such as di�erentiation
 re�
duce the precision of the series�

This strategy is implemented by calling testrat

with the functions testdrat
 testdlograt and
testrevrat� Each of these three functions takes
three arguments� the series
 the variable �which
we have been calling x�
 and the type of test that
should be performed on the transform� The last ar�
gument allows tests to be combined� for example

the call testrevrat�series�x�testdlograt� will
test the logarithmic derivative of the reversion of
the series for rationality� These tests
 or composi�
tions of them
 are successively called by the main
program �named generating in the examples that
follow�
 which returns a generating function if pos�
sible�

Some renormalization of the series is included in
testdrat
 testdlograt and testrevrat
 so that
further operations can always be applied� For in�
stance
 a series should preferably be of the form

x � a�x
� � � � �� anx

n � O�xn����

for reversion�
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3. EXAMPLES

The sidebars on this page and the next show a
number of representative examples of use of the
program generating� In some cases
 the output
has been simpli�ed
 using Maple� We use standard
mathematical notation for ease of reading
 but the
Maple input and output is straightforward� The
input for Example �
 for example
 would be

� generating�x � x�	 � 	 x�
 � 
 x�� �

� � x�� � 
 x�� � O�x�����

where � is the Maple prompt� The program out�
puts either �The generating function of this

series appears to be ���� or �I can find no

generating function for this series��
Some of the examples were selected from the

forthcoming second edition of N� J� A� Sloane�s
Handbook of Integer Sequences �Sloane�� We ap�
plied the program to a great number of power se�
ries
 both ordinary and exponential
 corresponding
to the sequences in that book �that is
 the coe	�
cients of the series were the terms of the sequences��
We chose our examples either for their intrinsic el�
egance
 or because they appear to be unknown
 or
to illustrate the power of the method� Some ex�
amples illustrate the use of the program on series
with polynomial coe	cients�

Example 1. This is the series coming from the Fi�
bonacci sequence� Here generating uses directly
Maple�s function convert�ratpoly� The smallest
precision for which the result comes out right is
six
 as shown� With a direct use of this ratpoly

function �and a simple rejection test� we obtained
generating functions for about ��� out of the ����
sequences in �Sloane��

Example 2. Here the program took the derivative�

Example 3. This is a specialization at t � �� of the
next example�

Example 4. This is the exponential generating func�
tion for Hermite polynomials� Observe how the
input series can have polynomial coe	cients
 and
how the number of terms needed to yield a signi��
cant result is quite small�

Example 5. Here the program took the logarithmic
derivative�

Example 6. Several generating functions with expo�
nents such as �

�

 �

�

 	

�
and ��

�
were obtained when

we ran our program on the sequences appearing in
�Sloane��

Example 7. This is the exponential generating func�
tion for Stirling polynomials of the �rst kind
 which
count permutations by number of cycles�

Input Output

1 x� x� � �x� � �x
 � �x� � �x� �O�x	�
�x

�	 � x� x�

2 � � �x� ��
� x� � ��

� x� � ��

 x
 � 
�

� x� � ��
� x� � 	�

	 x	 � 
�

 x
 � ���

� x� �O�x���
�� x�

�	� x�
� � ln

	

	� x

3 	 � x� x� � �
�x

� � �
��x


 � ��
��x

� � ��
�
�x

� � ��
���x

	 � ���
���
�x


 � ���
�
�

x

� �O�x��� exp
�
x� �

�x
�
�

4 	�xt�
�
�
��

�
� t

�
�
x��

�
�
� t�

�
� t

�
�
x��

�
�

�

�

 t

�� �
�
 t



�
x
�

�
�

 t�

�
�� t

�� �
��� t

�
�
x��O�x�� exp

�
�
�x���t� x�

�

5 	 � x� x� � �
�x

� � �	
�
x


 � 	�
���x

� � �	
�
�x

� � �
��
��
�x

	 � ����

��
x


 � ������
���

�x

� �O�x���
exp

�
�

x

� � �
�x

�
p
	� x

6
	 � �
x� ���x� � ��
�x� � 	����x
 � 

�
�x� � ������x�

� ��

���x	 � 	���	

�x
 � 
�������x� �O�x���

	 � 	�x� 
x�

�	� 
x�	��

7
	 � tx� �

� �t
� � t�x� � �

� �t
� � �t� � �t�x� � �

�
 �t

 � �t� � 		t� � �t�x


� �
��� �t

� � 	�t
 � ��t� � ��t� � �
t�x� �O�x��

� 	

	� x

�t
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Example 8. This is the exponential generating func�
tion for Stirling polynomials of the second kind

which count partitions of a set by number of parts�
This result was obtained through a double loga�
rithmic derivative�

Example 9. This illustrates the use of a rationality
test on the reversion of a series� The reversion
of this generating function is x��� � x��� therefore
the generating function f�x� is obtained as the real
solution of the cubic equation

�� � f�x��� x� f�x� � ��

Example 10. This generating function has two pa�
rameters
 and admits as one specialization the gen�
erating function for Laguerre polynomials� One
can �nd a generating function for most of the clas�
sical orthogonal polynomials using our program on
the �rst seven or so terms of their series�

Example 11. This generating function counts func�
tions from a set into itself with weight tk
 where k
is the number of recurrent points in the function�
Rev�f�x�� x� stands for the inverse for composition
of f�x�� If we denote by A�x� the solution to the
functional equation A�x� � x exp�A�x��
 the gen�
erating function is equal to

�

�� txeA�x�
�

A�x� is the generating function for rooted trees�

Many other functions such as tanx
 arctanx
 or
arcsinx also appeared as generating functions in
our experiments�

4. CONCLUSIONS

The success of our approach
 and also its limita�
tions
 depend on the set of transformations tried
before a rationality test is made� Many transfor�

Input Output

8
	 � tx� �

� �t
� � t�x� � �

� �t� �t� � t��x� � �
�
 �t� �t� � �t� � t
�x


� �
��� �t� 	�t� � ��t� � 	�t
 � t��x� �O�x��

exp�tex�t�

9
x� �x� � 	�x� � ��x
 � ���x� � 	
��x�

� ����x	 � 
����x
 � �
����x� �O�x���

�	 �
�	�
p
�	x� 	�� 	��

p
x�

���

�
p
x

�
�	�
p
�	x� 	� � 	��

p
x�

���

�
p
x

10

	 � �t� s�x� �
� �t

� � �ts� s� � t� �s�x�

� �
� �t

� � �t�s� �ts� � s� � �t� � 
ts� �s� � �t� �s�x�

� �
�
 �t


 � 
t�s� �t�s� � 
ts� � s
 � �t� � �
t�s

� ��ts� � 	�s� � 		t� � 

ts� ��s� � �t� �
s�x


� �
��� �t

� � �t
s� 	�t�s� � 	�t�s� � �ts
 � s� � 	�t


� ��t�s� 
�t�s� � ��ts� � ��s
 � ��t� � 	��t�s

� ���ts� � 	��s� � ��t� � ���ts� �
�s� � �
t� 	��s�x�

�O�x��

� 	

	� x

�t
exp

� sx

	� x

�

11

xt�
�
t� t�

�
x� �

�
�
� t� �t� � t�

�
x�

�
�

t� � �t� � 


� t� t

�
x
 �

�
��
� t� � ��

� t� � ���
�
 t� 
t
 � t�

�
x�

�
�
	�t� � 	�t� � �


� t� 	�t
 � �t� � t�
�
x�

�
�
�
�

 t� � �


� t
 � �
��
�� t� � ��

� t� � ��
�	
	�� t� �t� � t	

�
x	

�
�
���


���

t� �t	 � t
 � �
t� � ���
�
t� � ���

�
t
 � ���

�
t� � 
���


�
t�
�
x


�O�x��

tRev
� x

xt� 	
exp

�
�

x

xt� 	

�
� x
�
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mations beyond di�erentiation
 logarithmic di�er�
entiation and reversion may be considered� For
instance
 one could choose any invertible function
f�x� and consider the following transformations on
a series ��x� � a� � a�x � a�x

� � � � � � anx
n �

O�xn����

�f���x�� � taylor�a� � a�f�x� � � � �� anf�x�n��

�f���x�� � taylor�f�a�x � a�x
� � � � �� anx

n���

Here taylor�g� stands for the operation of taking
the Taylor expansion around � of a function g
 and
�f is de�ned when a� � �� If f h��i denotes the
reversion of f�x�
 one easily checks that

��f����g�x�� � g�f h��i�x���

��f�
��

�g�x�� � f h��i�g�x���

One nice case is when f�x� � lnx in �f � This
transformation allows the computation of gener�
ating functions that are rational functions of the
exponential� For instance
 one could obtain in this
manner the generating function

ex � �

�� ex

for the series

x � �
�
x� � ��

�
x� � ��



x
 � �
�

���
x� � ����

�
�
x�

� 
	���
��
�

x	 � ���
�
��



x
 � 	�
	���
���

�

x� � O�x����

which is the exponential series for ordered parti�
tions of a set� As it happens
 our program found
this generating function by other means
 namely by
taking the derivative of the reversion of the series

whose generating function is

�

�� � �x��� � x�
�

To describe other possible extensions of our ap�
proach
 we recall some de�nitions� A series y�x�

with coe	cients in K
 is said to be di�erentiably

�nite or D��nite �Stanley ����� if it satis�es some
nontrivial linear di�erential equation

p��x�y � p��x�y� � � � �� pk�x�y�k� � � �����

with coe	cients pj�x� � K�x�� A series y � y�x�
is said to be constructible di�erentially �nite or
CDF �Bergeron and Reutenauer ����� if
 for some
k � �
 there exist k series y�� � � � � yk
 with y� � y


and polynomials P�� � � � � Pk with coe	cients in K

satisfying

y�i � Pi�y�� � � � � yk� for i � �� � � � � k� �����

Both of these classes of series contain polynomials

algebraic series
 and the Taylor expansion around �
of usual functions such as ex
 log���x�
 or the trig�
onometric functions� They are also closed under
addition and multiplication
 and under composi�
tion with algebraic series� However
 the CDF class
is not closed under Hadamard �termwise� product

whereas the D��nite class is� On the other hand

CDF is closed under di�erentiation
 integration
 in�
version ���y�x��
 composition and reversion�

Neither class is contained in the other� All CDF
series are analytic around �
 so

P
n n xn is not

CDF
 though it is D��nite� On the other hand

the series expansion around � of �� cosx is not D�
�nite
 but is CDF�

Both classes allow for the characterization of a
wide range of generating functions� If one knows
the form of the liner di�erential equation ����� or
the system ������that is
 the number of equa�
tions and the degrees of the polynomials�the ex�
act equation or system characterizing a given series
or a set of series can then be found from the se�
ries� �rst terms� In the case of D��nite series
 this
technique has already been proposed and imple�
mented by Guttmann �Brak and Guttmann ������
For CDF series
 we have an experimental program
that has been used to obtain nice new generating
functions such as

F �u� v� x� �
��

ex��� � u� sin� �
�
�x�� cos� �

�
�x���

�

�����

where � �
p

�v � �� � u��� This is a generating
function �with parameters� for the number of max�
imal up�going paths in the composition poset �on�
going research in collaboration with S� Dulucq and
M� Bousquet�M
elou�� Function ����� is not D��nite
but is CDF� To obtain it
 we used the �rst few
terms of the series

� � ux � �
�
�v � u��x� � �

�
�v � �vu � u��x�

� �
�


�v � �v� � �vu � ��vu� � u
�x


� �
���

�v � ��v� � ��uv�

� �vu � ��u�v � ��vu� � u��x�

� � � � �
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obtained by explicit enumeration of the objects
considered
 in order to �nd the system

F � � F �� � G��

G� � v � �� � u�G � G����

F �u� v� �� � ��

G�u� v� �� � ��

Expression ����� is easily computed from this�
Our �rst implementation of generating com�

puted a generating function for either the ordinary
or the exponential series of about ���� out of the
���� sequences appearing in �Sloane�� Since the
�rst version of this article was written
 a Maple
package implementing some ideas presented here

as well as others such as the D��nite approach
 has
been written by Bruno Salvy and Paul Zimmer�
mann of INRIA �Salvy and Zimmermann�� It is
now available as a shared package under the name
�gfun�� �To learn more about obtaining shared
packages
 type �share to Maple�� The analogue of
our function generating in gfun is the function
guessgf� Giving guessgf the right set of options
results in its using the set of transformations de�
scribed in Section � of this paper�
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