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Preface to the Third Edition

Our aim in preparing this edition is to bring the material in the collection of papers in the
second edition of this source book up to date. Moreover, several delightful pieces became
available and are added.

This substantial supplement to the third edition serves as a stand-alone exposition
of the recent history of the computation of digits of pi. It also includes a discussion of
the thorny old question of normality of the distribution of the digits. Additional material
of historical and cultural interest is included, the most notable being new translations of
the two Latin pieces of Viete (translation of article 9 (Excerpt 1): Various Responses on
Mathematical Matters: Book VII (1593) and (Excerpt 2): Defense for the New Cyclometry
or “Anti-Axe”), and a thorough revision of the translation of Huygens’s piece (article 12)
published in the second edition.

We should like to thank Professor Marinus Taisbak of Copenhagen for grappling with
Viéte’s idiosyncratic style to produce the new translation of his work. We should like to
thank Karen Aardal for permission to use her photograph of Ludolph’s new tombstone in
the Pieterskerk in Leiden, the Smithsonian Institution for permission to reproduce a fine
photo of ENIAC, and David and Gregory Chudnovsky for providing a “Walk on the digits
of pi.” We should also like to thank Irving Kaplansky for his gracious permission to include
his “A Song about Pi.” Finally, our thanks go to our colleagues whose continued interest in
pi has encouraged our publisher to produce this third edition, as well as for the comments
and corrections to earlier editions that some of them have sent us.

L. Berggren

J. Borwein

P. Borwein

Simon Fraser University
December 2003



Preface to the Second Edition

We are gratified that the first edition was sufficiently well received so as to merit a second.
In addition to correcting a few minor infelicities, we have taken the opportunity to add
an Appendix in which articles 9 and 12 by Viete and Huygens respectively are translated
into English. While modern European languages are accessible to our full community—at
least through colleagues—this is no longer true of Latin. Thus, following the suggestions
of a reviewer of the first edition we have opted to provide a serviceable if fairly literal
translation of three extended Latin excerpts. And in particular to make Viéte’s opinions and
style known to a broader community.

We also record that in the last two years distributed computations have been made of
the binary digits of 7 using an enhancement due to Fabrice Bellard of the identity made in
article 70. In particular the binary digits of m starting at the 40 trillionth place are 0 0000
11111001 1111. Details of such ongoing computations, led by Colin Percival, are to be
found at www.cecm.sfu.ca/projects/pihex.

Corresponding details of a billion (23°) digit computation on a single Pentium II PC,
by Dominique Delande using Carey Bloodworth’s desktop 7 program and taking under
nine days, are lodged at www.cecm.sfu.ca/personal/jborwein/pi_cover.html. Here also are
details of the computation of 236 digits by Kanada et al. in April 1999.

We are grateful for the opportunity to thank Jen Chang for all her assistance with the
cover design of the book. We also wish to thank Annie Marquis and Judith Borwein for
their substantial help with the translated material.

Lennart Berggren
Jonathan Borwein

Peter Borwein

Simon Fraser University
July 5, 1999



Preface

Our intention in this collection is to provide, largely through original writings, an extended
account of pi from the dawn of mathematical time to the present. The story of pi reflects the
most seminal, the most serious, and sometimes the most whimsical aspects of mathematics.
A surprising amount of the most important mathematics and a significant number of the
most important mathematicians have contributed to its unfolding—directly or otherwise.

Pi is one of the few mathematical concepts whose mention evokes a response of recog-
nition and interest in those not concerned professionally with the subject. It has been a part
of human culture and the educated imagination for more than twenty-five hundred years.
The computation of pi is virtually the only topic from the most ancient stratum of mathe-
matics that is still of serious interest to modern mathematical research. To pursue this topic
as it developed throughout the millennia is to follow a thread through the history of math-
ematics that winds through geometry, analysis and special functions, numerical analysis,
algebra, and number theory. It offers a subject that provides mathematicians with exam-
ples of many current mathematical techniques as well as a palpable sense of their historical
development.

Why a Source Book?

Few books serve wider potential audiences than does a source book. To our knowledge,
there is at present no easy access to the bulk of the material we have collected.

Both professional and amateur mathematicians, whether budding, blooming, or begin-
ning to wilt, can find in it a source of instruction, study, and inspiration. Pi yields wonderful
examples of how the best of our mathematical progenitors have struggled with a problem
worthy of their mettle. One of the great attractions of the literature on pi is that it allows
for the inclusion of very modern, yet still highly accessible, mathematics. Indeed, we have
included several prize winning twentieth century expository papers, and at least half of the
collected material dates from the last half of the twentieth century.

While this book is definitely a collection of literature on, and not a history of, pi,
we anticipate that historians of mathematics will find the collection useful. As authors we
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believe that one legitimate way of exhibiting the history of a concept is in gathering a
coherent collection of original and secondary sources, and then to let the documents largely
tell their own stories when placed in an appropriate historical and intellectual context.

Equally, teachers at every level will find herein ample supplementary resources: for
many purposes from material for special topic courses to preparatory information for semi-
nars and colloquia and guidance for student projects.

What Is Included?

We have chosen to include roughly 70 representatives of the accumulated literature on pi.
In the Contents each piece is accorded a very brief but hopefully illuminating description.
This is followed by an Introduction in which we highlight some further issues raised by the
collection. Finally, since the pre-Newtonian study of pi presents many more problems for
the reader than does the material after the time of Huygens, we have included an Appendix
On the Early History of Pi. We have also provided two other Appendices. Computational
Chronology of Pi offers a concise tabular accounting of computational records, and Selected
Formulae for Pi presents a brief compendium of some of the most historically or computa-
tionally significant formulas for pi.

The pieces in the collection fall into three broad classes.

The core of the material is the accumulated mathematical research literature of four
millennia. Although most of this comes from the last 150 years, there is much of interest
from ancient Egypt, Greece, India, China, and medieval Islam. We trust that readers will
appreciate the ingenuity of our earliest mathematicians in their valiant attempts to under-
stand this number. The reader may well find this material as engrossing as the later work of
Newton, Euler, or Ramanujan. Seminal papers by Lambert, Hermite, Lindemann, Hilbert
and Mahler, to name but a few, are included in this category. Some of the more important
papers on the number e, on zeta functions, and on Euler’s constant have also been included
as they are inextricably interwoven with the story of pi.

The second stratum of the literature comprises historical studies of pi, based on the
above core sources, and of writings on the cultural meaning and significance of the number.
Some of these are present here only in the bibliography such as Petr Beckmann’s some-
what idiosyncratic monograph, A History of Pi. Other works on the subject are provided
in extenso. These include Schepler’s chronology of pi, some of Eves’s anecdotes about the
history of the number, and Engels’ conjecture about how the ancient Egyptians may have
computed pi.

Finally, the third level comprises the treatments of pi that are fanciful, satirical or
whimsical, or just wrongheaded. Although these abound, we have exercised considerable
restraint in this category and have included only a few representative pieces such as Keith’s
elaborate mnemonic for the digits of pi based on the poem “The Raven,” a recent offering
by Umberto Eco, and the notorious 1897 attempt by the state of Indiana! to legislate the
value of pi.

Lennart Berggren
Jonathan Borwein

Peter Borwein

Simon Fraser University
September 6, 1996

lOddly enough, the third page of this bill is apparently missing from the Indiana State Library and thus may now
exist only in facsimile!
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Some Points of Entry

For the reader looking for accessible points of introduction to the collection we make the
following suggestions:

o As general introduction:

35. Schepler. The Chronology of Pi (1950) 282
64. Borwein, Borwein, and Bailey. Ramanujan, Modular Equations, and
Approximations to Pi or How to Compute One Billion Digits of Pi (1989) 588

e As an introduction to irrationality and transcendence:

33. Niven. A Simple Proof that mw Is Irrational (1947) 276
49. van der Poorten. A Proof that Euler Missed. . . Apéry’s Proof of the

Irrationality of £(3) (1979) 439
24. Hilbert. Ueber die Transzendenz der Zahlen e und 7 (1893) 226

e As an introduction to elliptic integrals and related subjects:

30. Watson. The Marquis and the Land Agent: A Tale of the Eighteenth
Century (1933) 258
55. Cox. The Arithmetic-Geometric Means of Gauss (1984) 481

e As an introduction to the computational issues:

37. Wrench, Jr. The Evolution of Extended Decimal Approximations to

 (1960) 319
47. Brent. Fast Multiple-Precision Evaluation of Elementary Functions (1976) 424
70. Bailey, Borwein, and Plouffe. On The Rapid Computation of Various
Polylogarithmic Constants (1997) 663

e For a concise synopsis, the final “Pamphlet” makes an excellent
self-contained entry. 721
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Introduction

As indicated in the Preface, the literature on pi naturally separates into three components
(primarily research, history, and exegesis). It is equally profitable to consider three periods
(before Newton, Newton to Hilbert and the Twentieth Century) and two major stories (pi’s
transcendence and pi’s computation). With respect to computation, it is also instructive to
consider the three significant methods which have been used: pre-calculus (Archimedes’
method of exhaustion), calculus (Machin-like arctangent formulae), and elliptic and modu-
lar function methods (the Gaussian arithmetic—geometric mean and the series of Ramanujan
type).

In the following introduction to the papers from the three periods, we have resisted the
temptation to turn our Source Book into a “History of Pi and the Methods for Computing
it” Accordingly, we have made no attempt to give detailed accounts of any of the papers
selected, even when the language or style might seem to render such accounts desirable.
Instead, we urge the reader seeking an account of ‘what’s going on’ to either consult a
reliable general history of mathematics, such as that of C. Boyer (in its most recent up-date
by U. Merzbach) or V. Katz, or P. Beckmann’s more specialized and personalized history
of pi.

The Pre-Newtonian Period (Papers [1] to [15])

The primary sources for this period are, not surprisingly, more problematic than those of
later periods, and for this reason we have included an additional appendix on this material.
Our selections visit Egyptian, Greek, Chinese, and Medieval Arabo—European traditions.
We commence with an excerpt from the Rhind Mathematical Papyrus from the Middle
Kingdom of Egypt, circa 1650 B.C., representing some of what the ancient Egyptians knew
about mathematics around 1800 B.C. By far the most significant ancient work—that of
Archimedes of Syracuse (277-212 B.C.), which survives under the title On the Measure-
ment of the Circle follows. It is hard to overemphasize how this work dominated the subject
prior to the advent of the calculus.
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We continue with a study of Liu Hui’s third century A.D. commentary on the Chinese
classic Nine Chapters in the Mathematical Art and of the lost work of the fifth century as-
tronomer Zu Chongzhi. Marshall Clagett’s translation of Verba Filiorum, the Latin version
of the ninth century Arabic Book of Knowledge of the Measurement of Plane and Spherical
Figures completes our first millennium extracts.

The next selection jumps forward 500 years and discusses the tombstone of Ludolph
van Ceulen which recorded the culminating computation of pi by purely Archimedian tech-
niques to 35 places as performed by Ludolph, using 262-gons, before 1615. We complete
this period with excerpts from three great transitional thinkers: Frangois Viete (1540-1603)
whose work greatly influenced that of Fermat; John Wallis (1616-1703), to whom New-
ton indicated great indebtedness; and the Dutch polymath Christian Huygens (1629-1695),
who correctly formalized Willebrord Snell’s acceleration of Archimedes’ method and was
thus able to recapture Van Ceulen’s computation with only 230-gons. In a part of this work,
not reproduced here, Huygens vigorously attacks the validity of Gregory’s argument for the
transcendence of pi.

From Newton to Hilbert (Papers [16] to [24])

These comprise many of the most significant papers on pi. After visiting Newton’s contri-
bution we record a discussion of the arctangent series for pi variously credited to the Scot
James Gregory, the German Leibniz, and to the earlier Indian Madhava. In this period we
move from the initial investigations of irrationality, by Euler and Lambert, to one of the
landmarks of nineteenth century mathematics, the proof of the transcendence of pi.

The first paper is a selection from Euler and it demonstrates Euler’s almost unparal-
leled—save for Ramanujan—ability to formally manipulate series, particularly series for
pi. It is followed by an excerpt from Lambert and a discussion by Struik of Lambert’s proof
of the irrationality of pi, which is generally credited as the first proof of its irrationality.
Euler had previously proved the irrationality of e. Lambert’s proof of the irrationality of
pi is based on a complicated continued fraction expansion. Much simpler proofs are to be
found in [33], [48].

There is a selection from Shanks’s self-financed publication that records his hand cal-
culation of 607 digits of pi. (It is in fact correct only to 527 places, but this went unnoticed
for almost a century.) The selection is included to illustrate the excesses that this side of
the story has evoked. With a modern understanding of accelerating calculations this com-
putation, even done by hand, could be considerably simplified. Neither Shanks’s obsession
with the computation of digits nor his error are in any way unique. Some of this is further
discussed in [64].

The next paper is Hermite’s 1873 proof of the transcendence of e. It is followed by
Lindemann’s 1882 proof of the transcendence of pi. These are, arguably, the most important
papers in the collection. The proof of the transcendence of pi laid to rest the possibility of
“squaring the circle,” a problem that had been explicit since the late fifth c. B.C. Hermite’s
seminal paper on e in many ways anticipates Lindemann, and it is perhaps surprising that
Hermite did not himself prove the transcendence of pi. The themes of Hermite’s paper
are explored and expanded in a number of later papers in this volume. See in particular
Mahler [42]. The last two papers offer simplified proofs of the transcendence. One is due to
Weierstrass in 1885 and the other to Hilbert in 1893. Hilbert’s elegant proof is still probably
the simplest proof we have.
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The Twentieth Century (Papers [26] to [70])

The remaining forty-five papers are equally split between analytic and computational selec-
tions, with an interweaving of more diversionary selections.

On the analytic side we commence with the work of Ramanujan. His 1914 paper,
[29], presents an extraordinary set of approximations to pi via “singular values” of elliptic
integrals. The first half of this paper was well studied by Watson and others in the 1920s
and 1930s, while the second half, which presents marvelous series for pi, was decoded
and applied only more than 50 years later. (See [61], [62], [63].) Other highlights include:
Watson’s engaging and readable account of the early development of elliptic functions, [30];
several very influential papers by Kurt Mahler; Fields Medalist Alan Baker’s 1964 paper on
“algebraic independence of logarithms,” [40]; and two papers on the irrationality of ¢(3)
([48], [49]) which was established only in 1976.

The computational selections include a report on the early computer calculation of
pi—to 2037 places on ENIAC in 1949 by Reitwiesner, Metropolis and Von Neumann [34]
and the 1961 computation of pi to 100,000 places by Shanks and Wrench [38], both by
arctangent methods. Another highlight is the independent 1976 discovery of arithmetic—
geometric mean methods for the computation of pi by Salamin and by Brent ([46], [47], see
also [57]). Recent supercomputational applications of these and related methods by Kanada,
by Bailey, and by the Chudnovsky brothers are included (see [60] to [64]). As of going to
press, these scientists have now pushed the record for computation of pi beyond 17 billion
digits. (See Appendix II.) One of the final papers in the volume, [70], describes a method of
computing individual binary digits of pi and similar polylogarithmic constants and records
the 1995 computation of the ten billionth hexadecimal digit of pi.



Extract from the Rhind Papyrus

Problem 50
Example of a round field of diameter 9 khet. What is its area?

Take away 3§ of the diameter, namely 1; the remainder is 8. Multi-
ply 8 times 8; it makes 64. Therefore it contains 64 setat of land.
Do it thus:

1 9
¥% 1;
this taken away leaves 8
1 8
2 16
4 32
\8 64.

Its area is 64 setat.
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QUADRATURE OF THE CIRCLE IN ANCIENT EGYPT

BY PROF. DR, HERMANN ENGELS,
TECHNICAL UNIVERSITY OF AACHEN

Summaries

The mathematicians of ancient Egypt approximated
the area of a circle by a square with astonishing
accuracy. The way to find this approximation is
not handed down. In this paper a conjecture is
given which seems to be much more simple than earlier
attempts.

Die Mathematiker des alten Agypten approxi-
mierten mit erstaunlicher Genauigkeit die Kreisfldche
durch ein Quadrat. Es ist nicht Uberliefert, wie
diese Approximation entstanden ist. In der
vorliegenden Arbeit wird dariber eine Vermutung
mitgeteilt, die wesentlich einfacher ist als bisherige
Erkldrungsversuche.

The mathematicians in ancient Egypt approximated the area
of a circle by a square according to the rule: Shorten the dia-
meter of the circle by (1/9)th to get the side of the squarec.
This mecans a quadraturc of the circle by nr? = w(d/2)2 = (84/9)%,
wherefrom the excellent approximation w = (16/9)2 = 3.1605.

The crror is only 0.0189.

While M. Cantor [1907] still says that there is no way to
understand this construction, therc is an interesting conjccture
of K. Vogel and O. Necugebauer [Becker and llofmann 1951, 21]
which uses a half-regular octogon that approximates the circle
and nearly lcads to the wanted solution [Vogel 1958]. But this
conjecture seems to be too sophisticated. We here give a
simpler one.

Cantor [1907] says that the Egyptian stone masons covered
their designs and the walls in order to form a relief with
orthogonal nets. Then the cutting points of the lattice lines
and the contours of the design were carried over in fixed ratios.
This technique seems to be the key to the comprchension of the
Egyptian construction.

(1) If one attempts to draw a circle and a square inter-

secting this circle and having equal area, then
nearly cverybody intuitively gives a solution somcthing
like Figure 1.

Copyright ® 1977 by Academic Press, Inc.
All rights of reproduction in any form reserved.
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The points of intersection arc found by taking a quarter and
three quartcers respectively of the length of the side. While
this construction may arise from the feeling that this could be
the exact solution (more sophisticated trcatment of this problem
only reinforces this feeling) and thus needs no geometrical
knowledge, another way to Figure 1 is to use the above mentioned
nets, as shown in Figure 2. We can assume that this technique
was used for many centuries and hence that the probability of
finding a picture like Figure 2 (and hence Figure 1) is nearly
one.

Thus we have two very plausible and simple ways to realise
this construction. The final Egyptian solution is to be found
in a sccond step.

(2) The net-technique presents the possibility of getting

a connection betwcen a/2 and r in Figurc 1. Assume,
that a square is divided into 256 subsquares (Figure 3).
Then it follows that a = (8/9)d, while a = (2//%5 )d

is correct.. But the relative error € is less than

.62 percent

and is hardly noticcable even for a large diameter d.
This explanation of the Egyptian construction assumes two
crrors: an inaccurate detcrmination of the square, and an

'\
\\B
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2’2

Al
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Figure 3
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inaccurate calculation of MB. But both errors are not only very
small but also diminish each other: The area of the circle
passing through B (Figure 1) is n¢/3a/4)2 = (0,99083a)2 < a?,
which is slightly too small. But with 8/9 instead _of 2//5, the
result is the more accurate ﬂ(9a/16)2 = (0.99701a)°“.

The fact that we have no record of the slightest hint of
how to explain the Egyptian approximation (16/9)2 may have many
reasons, but if the construction was regarded as very simple,
we would not expect to find any written explanation. The con-
struction proposed is very simple and is based on the peculiarly
Egyptian use of square nets.
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MEASUREMENT OF A CIRCLE.

Proposition 1.

The area of any circle is equal to a right-angled triangle in
which one of the sides about the right angle vs equal to the radius,
and the other to the circumference, of the circle.

Let ABCD be the given circle, X the triangle described.

T G H

A D

Then, if the circle is not equal to K, it must be either
greater or less.

I If possible, let the circle be greater than K.
Inscribe a square ABCD, bisect the arcs AB, BC, CD, DA,

then bisect (if necessary) the halves, and so on, until the sides
of the inscribed polygon whose angular points are the points of-
division-subtend segments whose sum is less than the excess of
the area of the circle over X.
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Thus the area of the polygon is greater than K.

Let AE be any side of it, and ON the perpendicular on A £
from the centre O.

Then ON is less than the radius of the circle and therefore
less than one of the sides about the right angle in K. Also the
perimeter of the polygon is less than the circumference of the
circle, i.e. less than the other side about the right angle in K.

Therefore the area of the polygon is less than K'; which is
inconsistent with the hypothesis.

Thus the area of the circle is not greater than K.

II. If possible, let the circle be less than K.

Circumscribe a square, and let two adjacent sides, touching
the circle in E, H, meet in 7. Bisect the arcs between adjacent
points of contact and draw the tangents at the points of
bisection. Let A be the middle point of the arc £H, and FAG
the tangent at 4.

Then the angle TAG is a right angle.
Therefore 7¢>G4A
> GH.

It follows that the triangle FT'G is greater than half the area
TEAH.

Similarly, if the arc 4 H be bisected and the tangent at the
point of bisection be drawn, it will cut off from the area GAH
more than one-half.

Thus, by continuing the process, we shall ultimately arrive
at a circumscribed polygon such that the spaces intercepted
between it and the circle are together less than the excess of
K over the area of the circle.

Thus the area of the polygon will be less than K.

Now, since the perpendicular from O on any side of the
polygon is equal to the radius of the circle, while the perimeter
of the polygon is greater than the circumference of the circle,
it follows that the area of the polygon is greater than the
triangle K; which is impossible.
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Therefore the area of the circle is not less than K.

Since then the area of the circle is neither greater nor less
than K, it is equal to it.

Proposition 2.

The area of a circle is to the square on its diameter as 11
to 14.

[The text of this proposition is not satisfactory, and Archi-
medes cannot have placed it before Proposition 3, as the
approximation depends upon the result of that proposition.]

Proposition 3.

The ratio of the circumference of any circle to its diameter
is less than 3} but greater than 3}3.

[In view of the interesting questions arising out of the
arithmetical content of this proposition of Archimedes, it is
necessary, in reproducing it, to distinguish carefully the actual
steps set out in the text as we have it from the intermediate
steps (mostly supplied by Eutocius) which it is convenient to
put in for the purpose of making the proof easier to follow.
Accordingly all the steps not actually appearing in the text
have been enclosed in square brackets, in order that it may be
clearly seen how far Archimedes omits actual calculations and
only gives results. It will be observed that he gives two
fractional approximations to 4/3 (one being less and the other
greater than the real value) without any explanation as to how
he arrived at them; and in like manner approximations to the
square roots of several large numbers which are not complete
squares are merely stated. These various approximations and
the machinery of Greek arithmetic in general will be found
discussed in the Introduction, Chapter IV.]

I. Let AB be the diameter of any circle, O its centre, AC
the tangent at A; and let the angle AOC be one-third of a
right angle.
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Then OA : AC[=y/3:1]>265:153............. (1),
and 0C:CA[=2:1]=306:153............... (2).

First, draw OD bisecting the angle A0C and meeting AC
in D.
Now CO:04=CD: DA, [Eucl. VL. 3]
so that [CO+ 04 :04=CA4: DA, or]
CO+04:CA=04:A4D.
Therefore [by (1) and (2)]
04 : AD>571:133 oovvvenininnnnn. (3).
Hence 0D?: AD*[=(04*+ AD?*) : AD?
>(571% + 153°%) : 1537]
> 349450 : 23409,
so that OD : DA >5914:153 covvvninininninnnne. (4).

I>om m

Secondly, let OF bisect the angle 40D, meeting AD in E.
[Then DO :04=DE: EA,
so that DO+0A :DA=04:AE]
Therefore 04 : AE[> (5913 + 571) : 153, by (3) and (4)]
> 11628 : 153 ccuvceeerrerenane, (5).

10
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[It follows that
OE*: EA* > {(11624)* + 1537 : 158"
> (1350534¢3 + 23409) : 23409
> 137394333 : 23409.]
Thus OFE : EA>11725 :153...ccivviniininnnnn. (6).

Thirdly, let OF bisect the angle AOE and meet AE in F.

We thus obtain the result [corresponding to (3) and (5)

above] that
OA : AF[> (11623 +1172}) : 153]

>28341 : 153..cuieiiiinnnrnnnn. (7).
[Therefore OF*:FA*> {(23341)*+153% : 153

> 5472132 : 23409.]
Thus OF : FA >2339} :153..cccccevveenennnnn. (8).

Fourthly, let OG bisect the angle AOF, meeting AF in G.
We have then
04 : AG[> (23341 +2339}) : 153, by means of (7) and (8)]
> 4673} : 158.

Now the angle AOC, which is one-third of a right angle,
has been bisected four times, and it follows that

£ AOG = (a right angle).

Make the angle AOH on the other side of 04 equal to the
angle A0@, and let GA produced meet OH in H.
Then £ GOH =4; (a right angle).

Thus GH is one side of a regular polygon of 96 sides cir-
cumscribed to the given circle.

And, since 04 : AG >4673% : 153,
while AB=204, GH=24G,
it follows that
AB : (perimeter of polygon of 96 sides) [> 46733 : 153 x 96]
> 4673} : 14688.

11
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14688 _, 667}
46733~ ° T 46733

[<3+~%:|

<34

Therefore the circumference of the circle (being less than
the perimeter of the polygon) is a fortior: less than 3} times
the diameter AB.

II. Next let AB be the diameter of a circle, and let AC,
meeting the circle in C, make the angle C4 B equal to one-third
of a right angle. Join BC.

Then AC : CB[=4/3:1]<1351 : 780.

First, let AD bisect the angle BAC and meet BC in d and
the circle in D. Join BD.

Then £LBAD=«dAC

= £dBD,
and the angles at D, C are both right angles.
It follows that the triangles ADB, [ACd)], BDd are similar.

But

c

(o} A

Therefore AD:DB=BD: Dd
[=AC: Cd]
=AB: Bd [Eucl. VL. 3]
=AB+ AC : Bd + (d
=AB+ AC : BC
or BA+AC:BC=AD : DB.

12
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[But AC : CB< 1351 : 780, from above,
while BA :BC=2:1
=1560 : 780.]
Therefore AD:DB<2911:780.....ccccncnnenenn (1).
[Hence AB*: BD* < (2911% 4 780%) : 780*
< 9082321 : 608400.]
Thus AB: BD<3013% :780............... (2).

Secondly, let AE bisect the angle BAD, meeting the circle
in E; and let BE be joined.

Then we prove, in the same way as before, that
AE : EB[=BA+AD: BD
< (30132 +2911) : 780, by (1) and (2)]
< 59244 : 780
<5924% x {5 :780 x {5
<1823 :240....ccciiiiiniiiiiiniinn, (3).
[Hence  AB?:BE® < (1823%+ 240°) : 240°
< 3380929 : 57600.]
Therefore AB:BE <1838 :240......coionne.. (4).

Thirdly, let AF bisect the angle BAE, meeting the circle
in F.

Thus AF : FB[=BA + AE : BE
< 3661:% : 240, by (3) and (4)]
< 36612 x 11 : 240 x 1}
<1007 : 66.uceeinninnnninninnnn(3).
[It follows that
AB*?: BF* < (1007* + 66°) : 66
< 1018405 : 4356.]
Therefore AB: BF <1009 : 66..c.c.ccvvinennnnnn. (6).

Fourthly, let the angle BAF be bisected by AG meeting the
circle in G.

Then AGQ:GB[=BA + AF : BF]
<2016} : 66, by (5) and (6).

13
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[And AB*: BG* < {(2016})* + 667} : 66°
< 40692844 : 4356.]
Therefore AB : BG <2017} : 66,
whence BG: AB>66 :2017.....c.cvvnnnnennnn. (7).

[Now the angle BAG which is the result of the fourth bisection
of the angle BAC, or of one-third of a right angle, is equal to
one-fortyeighth of a right angle.

Thus the angle subtended by BG at the centre is
77 (a right angle).]

Therefore B@ is a side of a regular inscribed polygon of 96
sides.

It follows from (7) that
(perimeter of polygon) : AB[> 96 x 66 : 20174]
> 6336 : 2017%.
6336

And m > 3H.

Much more then is the circumference of the circle greater than
314 times the diameter.
Thus the ratio of the circumference to the diameter

< 3} but > 319,

14
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ARCHIMEDES THE NUMERICAL ANALYST

G. M. PHILLIPS
The Mathematical Institute, University of St. Andrews, St. Andrews, Scotland

1. Introduction. Let py and Py denote half the lengths of the perimeters of the inscribed and
circumscribed regular N-gons of the unit circle. Thus p; = 3V3 /2, P;=3V3,p,= 2V2, and
P, = 4. It is geometrically obvious that the sequences { py) and { Py} are respectively monotonic
increasing and monotonic decreasing, with common limit #. This is the basis of Archimedes’
method for approximating to #. (See, for example, Heath [2].) Using elementary geometrical
reasoning, Archimedes obtained the following recurrence relation, in which the two sequences
remain entwined:

1/Pyy=3(1/Py+ 1/py) (1a)
Pin = V(PanPn)- (1b)

We note that these involve the use of the harmonic and geometric means. Beginning with N = 3
and applying the recurrence formula five times, Archimedes established the inequalities

3 < Pos < T < Py < 33. 2

His skill in obtaining rational numbers 347 and (the very familiar) 3} so close to the irrational
numbers pys and Pys can be more readily appreciated if we display all four numbers to four
decimal places:

Pse=3.1410,  31%= 31408
Pyo=3.1427, 3} =3.1429.

2, Stability of the Recurrence Relation. In any thorough study of a recurrence relation we
need to consider the question of numerical stability, that is, whether rounding errors are
magnified by the recurrence relation. As an example, consider the sequence {a,} defined by

a, =2 [Tesr*cos n0 do. 3
7o
(The a, are the Chebyshev coefficients for e*; see Clenshaw [1].) It is easily verified, on
integrating (3) by parts, that this sequence satisfies the recurrence relation

Apa1™ Ay — znan' (4)

In principle, given a, and a,, we may then use (4) to compute the value of any a,. In practice,
the recurrence relation (4) does not provide a satisfactory method of computing this sequence,
because it is numerically unstable. To illustrate this, suppose we begin with a, = 2.5321 and
a, = 1.1303, which are correct to 4 decimal places. Using (4) and rounding each a, to 4 decimal
places gives a; = 0.2715, a; = 0.0443, a, = 0.0057, as= —0.0013, and a5 = 0.0187. The true
values, to 4 decimal places, are a, and a; as above and a,= 0.0055, as= 0.0005, and
a¢ = 0.0000. We can now see, on re-examining (4), that the error in a,, ., is approximately (—~2n)
times the error in a,,, which shows why (4) is numerically unstable.

To examine the stability of (1) let us assume that, due to the effect of rounding errors, we
actually compute numbers 5, and 5y instead of P,y and py, where

George M. Phillips did research in the theory of numbers under E. M. Wright at Aberdeen. He taught at
Southampton (1963~ 1967) before moving to St. Andrews, where he is now Reader in Numerical Analysis. He has
made research visits to the University of Texas at Austin and, on several occasions, to the University of Calgary.
His main research interests are in numerical analysis and approximation theory. He is coauthor (with P. J. Taylor)
of Computers (1969) and Theory and Applications of Numerical Analysis (1973).—Editors
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Py = Poy(1 + 8), (5a)
Pn=pn(l + ). (5b)

We call § and e the relative errors in P,y and py, respectively. To find the relative error in p,,
we have

Pan= \/(ﬁznﬁn)- ©)

Thus 5,y (neglecting the rounding error incurred in evaluating the right side of (6)) is the
number we would actually obtain, instead of p,. Substituting (5) into (6), we have

Pan — Pan 1/2 1/2
e Tl =(1+6 1+ -1
LB o (14 8) (1 + ) ™

as the relative error in p,,. Using binomial expansions in (7) we see that, for small values of §
and ¢,

Pan— Pan

o =~3(8 +¢€). 3)

An analysis of (la) produces a result similar to (8), showing that rounding errors are not
magnified by the recurrence relation, which is thus stable.

3. Rate of Convergence. We have a great advantage over Archimedes in being able to express
Py, and p,, in terms of circular functions. It is easily verified that
Py = Nsin(w/N) (¢))
and
Py = Ntan(z/N). (10)
From (9) and (10) we can justify that (1a) and (1b) are indeed correct and, further, from our

familiarity with the Maclaurin series for sin§ and tan 8, we can establish the rate of convergence
of the sequences {py} and {Py}. Considering py first, we have from (9)

o= M(7) -5 (7 (&) -] b

1 1
ﬂ—pnzzw’-ﬁ. (12)

We could give a more precise form of (12) by writing down the first two terms of the series (11)
plus a remainder term. We can now see from (8) that the error in pay is approximately
one-quarter of the error in py. More precisely, we have

. T~ Pa2N 1
lim — 2N -, 13
N—sox T — PN 4 ( )

so that, for large N,

By considering the series for tan(wr/N), we see that the errors in the sequence { Py} decrease at
the same rate. An inspection of the values of py and Py in Table 1 shows that one might guess
this result. (An explanation of the last column of this table follows later.) Given the superb
numerical skills of Archimedes, one is sorely tempted to conjecture that he must have been
aware of the rate of convergence of his sequences.

4. “Faster” Convergence. We have just seen that the convergence of the sequences { Py} and
{pn) is very slow, and it is interesting to consider how to improve on this. First we expand (10)
in a Maclaurin series to give

pem () + 3G + BE -] as

16
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TABLE 1. The first few values of py,, Py, and u .

N PN Py Uy
3 2.598076 5.196152 3.464102
6 3.000000 3.464102 3.154701
12 3.105829 3.2153%0 3.142349
24 3.132629 3.159660 3.141639
48 3.139350 3.146086 3.141596
96 3.141032 3.142715 3.141593
192 3.141452 3.141873 3.141593

We may now eliminate the terms in 1/N? between (11) and (14) by writing

1 1 #* 15
u~-§(2p~+P~)-1r+-2—07v7+---, ( )
so that s
1
uﬂ—wzz—o-% (16)

and uy converges to = faster than py or Py. The first few values of u, are given in Table 1. If we
re-calculate the numbers in Table 1 to greater accuracy, we find that ugg gives an approximation
to = which is more accurate, by a factor greater than 1000, than either of Archimedes’
approximations pgs and Pyg.

The technique of eliminating the term in 1/N? could also have been done between p, and
Pan (or, equally, between Py and P,y ). Thus, similarly to (16), we can show that, say,

on— 7 =3(4Pan—PN) — %

also behaves like a multiple of 1/N* for large N. This process is called extrapolation to the limit.
(See, for example, Phillips and Taylor [3]) This process can be repeated; that is, we can
climinate the term in 1/N* between vy and v;y. In Table 2 we show the dramatic effect of
repeated extrapolation to the limit. Note that the last two numbers in the final column of Table
2 give 7 correct to 9 decimal places, although it is only the effect of rounding error which has
prevented us from achieving agreement to twice as many places of decimals. If we re-calculate
the numbers py in Table 2 to 20 decimal places and carry out five extrapolations (rather than
three given in the table), we obtain an approximation which differs from « by less than 10, It
is remarkable that such accuracy can be extracted from Archimedes’ raw material.

TABLE 2. The effect of repeated extrapolation to the limit.

Extrapolated Values

N Pn on Repeated Extrapolation

3 2.598 076 211

6 3.000 000 000 3.133 974 596

12 3.105 828 541 3.141 104 721 3.141 580 063

24 3.132 628 613 3.141 561 970 3.141 592 454  3.141 592 650
48 3.139 350 203 3.141 590 733 3.141 592 651 3.141 592 654
9 3.141 031 951 3.141 592 534 3.141 592 654 3.141 592 654

S. Analysis of Convergence. In this final section we analyze the behavior of the recurrence
relation (1) with arbitrary positive starting values. In divorcing (1) from its geometrical context,
we shall change the notation and rewrite (1) in the form

1/Oner=3(1/Qn + 1/q5) (17a)
aver= V(Q@n+19n)s (17b)

17
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beginning with arbitrary go, Qo > 0. We examine separately the two cases 0 < go < Qo and
0< Qo< g0

Case 1. For 0 < g¢ < Qo we shall write

%";=cos0, a-z-ngjQ——-—q:z)—m, (18)
so that
Qo= atand, qo = asind. (19)
Substituting (15) into (13), we easily obtain
Q,=2atan}l, g¢,=2asin3}f. (20)
It follows that
Oy =2"atan(8/2%), qy=2"asin(8/2"V), @n
and hence the sequences {Qy} and {gy} converge to the common limit
ab = —990 __ co5-1(g0/Q0). @
(Q3-43)
The “Archimedes case” corresponds to g = 3V3 /2, Qp=3V3.
Case 2. For 0 < Q¢ < qo we write
—é%=cosh0, a--zqo—Qozlﬁ, 23)
(a5-09%)
so that
Qo= atanhf, go= asinhd. (24)

Substituting (24) into (17), we obtain
0, = 2atanh 30, ¢, = 2asinh }4.
It follows that
Qn = 2¥atanh(6/2%), gn = 27asinh(8/2%),

and hence the sequences {Qy)} and {gy} again converge to a common limit which, in this

case, 1s

0= (_q;“lg(';':—)ﬁi cosh=1(g0/Qo)- 25)
0~ ¥o

As an amusing application of this last result, let us choose
Qo=2t, gqo=1t*+1
for any positive ¢ = 1. Then from (25) the sequences {Qy} and {gy} have common limit

2
22+ 1) logt.
(GER))

This gives a simple method for evaluating log¢ and repeated extrapolation may be used to
accelerate convergence. However, this is not proposed as a practical algorithm for computing
log:.
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This paper discusses the mcthod of Liu Hui (3rd century) for evaluating the ratio of the
circumference of a circle 1o its diamcter, now known as 7. A translation of Liu's method is
given in the Appendix. Also examined are the values for 7 given by Zu Chongzhi (429-500)
and unsurpassed for a millenium. Although the method used by Zu is not extant, it is almost
certain that he applied Liu’s method. With the help of an electronic computer, a table of
computations adhering to Liu’s method is given to show the derivation of Zu’s results. The
paper concludes with a survey of circle measurements in China. © 1986 Academic Press, Inc.
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Dieser Aufsatz erortert Liu Huis (3. Jahrhundert n. Chr.) Methode, das Verhiltnis des
Umfanges eines Kreises zu seinem Durchmesser zu berechnen, das heute als 7 bekannt ist.
Der Anhang enthiilt eine Ubersetzung von Lius Methode. Ebenso werden die Werte von Zu
Chongzhi (425-500) fiir 7 gepriift, die tausend Jahre lang nicht iberboten wurden. Obwohl
die von Zu verwandte Methode nicht mehr existiert, ist es fast sicher, dal er sich Lius
Methode bediente. Mit Hilfe eines elektronischen Rechners wird eine Berechnungstabelle
beigefiigt, die sich an Lius Methode anlehnt, um die Ableitung von Zus Ergebnissen zu
zeigen. Der Aufsatz schlieBt mit einem Uberblick iiber die Kreismessungen in China.
© 1986 Academic Press, Inc.
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China, like any other early civilization, had its fair share of men who tried to
find as accurately as possible the area or the circumference of a circle. Two men
stand out prominently among these: Liu Hui [a]' of the 3rd century and Zu

! Lowercase letters in brackets indicate a Glossary listing (at the end of the paper).
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Chongzhi [b] of the Sth century. This paper first discusses the contributions of Liu
and Zu to calculation of the ratio of the circumference to the diameter, now known
as r, and their significance, and, sccond, offers a gencral survey of the evaluation
of this ratio in China.

LIU’S METHOD

Problems 31 and 32 in chapter 1, entitled fang tian [c] (mensuration of fields), of
the Jiu zhang suanshu [d] (Nine chapters of the mathematical art) [1] assume the
area of a circle is half the circumference times half the diameter. In his commen-
tary on problem 32, Liu Hui explained the derivation of this formula, discussed
why the ratio of the circumference to the diameter was generally taken as 3, and
then derived a more precise value for the ratio. Liu’s commentary—divided into
three sections for ease of reference in this paper—is summarized below and
offered in translation in the Appendix [2].

Section 1. Start with a regular hexagon inscribed in a circle of radius 1 chi [e].
The product of one side of the hexagon, the radius, and 3 (= § X 6) gives the area
of an inscribed dodecagon. Repeat this process by taking the product of one side
of the dodecagon, the radius, and 6 (= 3 X 12) to obtain the area of an inscribed
polygon of 24 sides. According to Liu’s principle of exhaustion, if the process is
repeated long enough, eventually a polygon will be reached whose sides are so
short that it will coincide with the circle. This explains why the area of the circle is
the product of half the circumference and the radius. The value of 3 to 1 for the
ratio of the circumference to the diameter is imprecise as this is in fact the ratio of
the perimeter of the hexagon to the diameter. However, this inaccuracy was
passed down from generation to generation, Liu explains, because of an unwilling-
ness to strive for accuracy.

Section 2. This section summarizes the stages of Liu’s computation of a more
precise value of the ratio. Let the side of an n-sided polygon = a, and its area =
A,.InFig. 1, n = 6,

OC = radius = r = 10, BC = }a¢ =5,

It

be = Vr? — ial = 8.660254, DB = ¢, =r — bs = 1.339746,

OB ]
26.7949193445.

a
DC? = al, = ¢t + }d}
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The same process is repeated for a dodecagon of side a;; as follows.

by = Vr? — ia}, = 9.659258, cip =r — by = 0.34742,
a3y = ch + Y, = 6.8148349466.

The process continues:
by = 9.914448, 4 = 0.085552,  ak

1.7110278813,

ass = 1.30806, Ags = 24rass = 31332
bsg = 9.978589, ces = 0.021411, ade = 0.4282154012,

dgg = 065438, A|92 = 48"09{, = 3]4(1—'2'%, A|92 - Ag(, = %2%,

31485 = A1gs < A < Agg + 2(A 197 — Agg) = 314382,
where A = the area of the circle.

Hence A = 314 (to the nearest integer) and S: A:s = 200: 157 : 100, where S = the
area of the square circumscribing the circle and s = the arca of the square in-
scribed in the circle. Therefore circumference/diameter = 4.

Section 3. A = Ay + &% = 31455. There is no clear explanation of how g5 is
derived apart from the fact that it bears some relation to the residual area A9 —
Ags = 332, It follows that S: A :s = 5000:3927:2500 and circumference/diameter
= $92 It is stated that this ratio can be verified by computing a;s3s and hence
deriving Asp72.

CONCLUSIONS FROM LIU’S METHOD

1. A problem in the Ahmes Papyrus (from ancient Egypt) gave the numerical
area of a circle, and the excavations at Susa in 1936 revealed the old Babylonians’
calculation of the circumference of a circle in relation to its inscribed hexagon
[Neugebauer 1952, 47]. In instances such as these, historians calculate the value
of 7r from the area or other recorded figures. Archimedes [Heath 1897, 93-98] and
Liu Hui, however, are the only men from ancient history whose methods for
obtaining the ratio of the circumference of a circle to its diameter are known to
modern historians.

2. Both Archimedes’ and Liu’s methods employed regular polygons inscribed in
the circle. Archimedes also had polygons circumscribing the circle. Both men
assumed the principle of exhaustion, holding that eventually a polygon will be
reached whose sides are so short that it will coincide with the circle. This principle
was first stated by the Greek philosopher, Antiphon, in the 5th century B.c. when
he began with a square inscribed in a circle [Heath 1921 I, 222].

3. The genius of Archimedes is displayed in his method. Without knowledge of
subjects such as decimal notation and trigonometry, he was able to devise a
method with inscribed and circumscribed polygons of 96 sides which gave the
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values of 7 as greater than 34¢ but less than 34. His method of calculating the
approximate values of irrational square roots is still in the realm of speculation.
Compared with Archimedes’ method, then, Liu’s method is simple and elegant.
He used only inscribed polygons, and each stage of his derivation is clear.

4. Archimedes’ method is solely concerned with the evaluation of the perime-
ters of the inscribed and circumscribed polygons from which the circumference of
the circle is deduced. It does not draw any conclusions about the arca of the circle
in relation to the ratio 7 [3]. By showing that the area of a circle is the product of
half the circumference and the radius, Liu’s method proved that the ratio of the
area of a circle to the square of its radius is identical to the ratio of the circumfer-
ence to the diameter, or, in other words, ar.

5. One of the reasons for the simplicity of Liu’s method is that he inherited a
tradition using a decimal number system. The existence of a word—numeral deci-
mal system in China can be traced to the oracle bone characters of the Shang
dynasty [Needham 1959, 12-13]. Since the Warring States period (480 to 221 B.C.)
counting rods, manifesting the place value of a decimal number system, were used
for computation [Ang 1977, 97-98]. Liu’s work scrves as a fine example of the
depth of the ancient Chinese understanding and handling of large numbers and
decimal fractions as carly as the 3rd century. In his text cach numeral has a place
name and on the counting board [4] each rod numeral has a place position relative
to the other rod numerals. In the text, integral places of order 10, 102, 103, . . .,
10" are called shi [f], bai |g}, gian |h], wan |i], shi wan | j}, bai wan K}, gian wan
[11, yi [m], shi yi [n], bai yi [0], and gian yi [p], respectively. For a decimal fraction,
the names of the first five decimal places are given as fen [q], li [r], hao [s], miao
[t], and Au [u], respectively. In calculating a value to more than five decimal
places, Liu remarked that the ‘‘minute numbers’” had no place names and so the
numeral in the sixth decimal place had to be converted to a fraction. For example,
be = 8 cun [v] [5]1 6 fen 6 1i [0 hao) 2 miao 5% hu (sec the Appendix, Section 2). In
this fashion, the lengths of all b,’s are truncated at the sixth decimal place. This
ensures a certain degree of accuracy for the values of subsequent a2’s which are
truncated at the tenth decimal place. Without the ‘*‘modern’ notational decimal
point, each set of a’ numerals is considered by Liu in square hu [u] units. For
computing the area A,,, the value of a, is obtained from a2 by the square root
method and is truncated at the fifth decimal place. For example, a3 = 4282154012
square hu and ag, = 6 fen S li 4 hao 3 miao 8 hu (sce the Appendix, Section 2). The
ancient Chinese had devised a method for computing the square root of any
number to any degree of accuracy. The earliest record of this method is found in
the Jiu zhang suanshu [Qian 1963, 150; Wang & Needham 1955, 350-365]. Liu
was therefore well aware that a number of 2a digits would give a square root with
a number of n digits or vice versa.

6. Liu’s method, written for computation by the counting rod system, illustrates
the practicality and immense potential of this computational device. With this
system, abstract ideas had to be transformed into concrete ones for the handling
of counting rods on the counting board. Like the modern computer, the counting
rod system encouraged algorithms such as the one devised by Liu. The first
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decimal place was called fen [q] and, on the counting board, digits of the first and
subsequent decimal places were designated to specified positions. The concept of
decimal fractions existed, as it was merely an extension of the integral number
system. In the same way the concept of zero in a notational form existed. If there
were zero or no digit in a particular place value, the designated position on the
counting board for that place value was left blank. P. Beckmann remarks that the
Chinese discovery of the equivalence of the digit zero made them ‘‘far better
equipped for numerical calculations than their western contemporarics’ |Beck-
mann 1970, 27].

7. Both Archimedes and Liu had discovered methods that would enable men of
later generations to calculate 7 to any desired degree of accuracy. With these
methods, the number of decimal places to which 7 could be calculated was merely
a matter of computational ability and perseverance. Thus, in 1593 Frangois Viéte
and Adriaen van Roomen used Archimedes’ method to calculate 7 to 9 and 15
decimal places, respectively. A few years later Ludolph van Ceulen computed =
to 35 decimal places [Beckmann 1970, 98-99]. There is strong evidence that Zu
Chongzhi used Liu’s method to obtain his estimates of w. A mathematician,
familiar with the counting rod system and as talented as Zu, would have no
difficulty in applying Liu’s method to an enlarged number or extending the num-
ber of decimal places in the computation and thereby calculating 7 to a higher
degree of accuracy than Liu.

ZU CHONGZHI'S VALUES FOR =

Zu Chongzhi’s values for 7= were not surpassed until a millenium later when al-
Kashi evaluated 7 correctly to 16 decimal places [Youschkevitch & Rosenfeld
1973, 258]. It is interesting to note that Zu’s fractional value of 7 in the form 33
was also given by the Indians in the 15th century [Gupta, 1975, 3] and by Adriaan
Anthoniszoon in the 16th century [Beckmann 1970, 98].

As an addendum to Liu Hui’s commentary, Li Chunfeng [w] stated that Zu
considered Liu’s ratios inaccurate and therefore proposed to compute further
[Qian 1963, 106]. Zu’s concern for a better approximation for = was essentially
due to his desire for the compilation of an astronomical system for the empire.
There is no doubt that Zu incorporated the method for approximating 7 into his
mathematical text, Zhui shu [x] (Method of mathematical composition), which is
not extant. There remain now but quotations in the official histories. For example,
the Sui shu y] (Standard history of the Sui dynasty) [387-388] relates:

In ancient mathematics, the ratio of the circumference to the diameter was taken to be 3 to 1
but this was only a rough estimate. Though various efforts had been made by Liu Xin {z],
Zhang Heng [aa], Liu Hui, Wang Fan [ab] and Pi Yanzong [ac], the results obtained so far still
lacked precision. Towards the end of the [Liu] Song period (420-479), Zu Chongzhi, a
historian of Nanxu [ad] district, found further approximations. He took 100000000 [units] as 1
zhang [ae] along the diameter of a circle [of length 2 zhang] and found an upper value of 3
zhang 1 chi 4 cun [5] 1 fen 51i 9 hao 2 miao 7 hu and a lower value of 3 zhang 1 chi 4 cun 1 fen
51i9 hao 2 miao 6 hu for the circumference [saying that] the true value must lie between the
upper and lower limits. His ‘‘very close’’ ratio (mi lu [af]) was 355 to 113 and the “‘approxi-
mate’’ ratio (yue lu [ag]) was 22 to 7.
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It is to be noted from the above account that numbers were enlarged or, in other
words, extended to the left rather than the right in order to attain greater accuracy
in calculation. Thus Zu used a radius of 1 zhang, taken as 100000000 units, while
in Liu’s figure the radius 1 chi equaled 1000000 Au. Obviously, it is easier to deal
with larger whole units than with decimal fractions extended to more decimal
places. From knowledge of Liu’s method and Li Chunfeng’s [w] statement, it
seems logical to infer that Zu’s method of finding the value of 7 between 3.1415926
and 3.1415927 was based on Liu’s theory. Based on this assumption, the present
authors proceeded to do the calculations on an electronic computer. Care was
taken to devise a program for the computer which adhered to the method used by
Liu Hui [6]. The following findings resulted.

1. According to Liu’s method the values of b,, a2, and a, are truncated at the
sixth, tenth, and fifth decimal places, respectively. If Liu’s procedure is extended
and strictly followed, it is impossible to obtain Zu’s estimates irrespective of the
value of n. The simple reason is that Zu’s estimates for 7 are up to the seventh
decimal place.

2. If an adjustment is made to enlarge the radius from Liu’s 10 units to 1000
units as specified in the Sui Shu, then the values of b, and a2 can be truncated, as
in Liu’s method, at the sixth and tenth decimal places, respectively. The proce-
dure terminates when n = 6144, and, to obtain Zu’s valucs for 7, the values of
ae144 and a xgg have to be truncated at the eighth and ninth decimal places, respec-
tively. This is a deviation from Liu’s method, where values of a, are truncated at
the fifth decimal place. However, an extension of decimal places should not have
involved any difficulty for Zu. The figures obtained are shown in the table below.

b=  866.025403 by = 999.966533

ce =  133.974597 cwe = 0.033467

a’, = 267949.1926413124 adw = 66.9321654633
ba = 965.925826 b = 999.991633

2 = 34.074174 Cie8 = 0.008367

a3, = 68148.3474941103 atne = 16.7331113724
by =  991.444861 bisie = 999.997908

Cu = 8.555139 G = 0.002092

als = 17110.2772768368 aln = 4.1832822195
b =  997.858923 by = 999.999477

Ca = 2.141077 o = 0.000523

ale =  4282.1535299291 aiee = 1.0458208283

doas = 1.02265381

buw =  999.464587

Cop = 0.535413 boraa = 999.999869
alyy = 1070.8250495627 Cos = 0.000131

alow = 0.2614552241

by =  999.866137 apms = 0.511326924
Ci92 = 0.133863
alu =  267.7241816933
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From the above table and by Liu’s method, where r = the radius, we have
Apsg = 1 X agras X 3 X 6144 = r X 3141.592504
r X 3141.5925 (truncated at the fourth decimal place)

Azsie = I X dipngg X 3 x 12288 = r X 3141.592621
=r X 3141.5926 (truncated at the fourth decimal place).

Il

Again by Liu’s method,
Assre < A < Ajgags + 2(Aassze — Aj2ass)

3.1415926 < ?2- < 3.1415927,

where A = the area of the circle.

The degree of accuracy for the approximation of = depends on the number of
places to which b, is calculated, and thereafter appropriate extensions of places
are performed on c,, a2, and a,. All these operations were known to the Chinese
and for Zu these would have posed no problem except perhaps perseverance.
Moreover, Liu’s mathematical works were known to Zu. For instance, in one of
the extant fragmentary records, it is noted that Zu and his son Zu Geng [ah]
completed the well-known proof of the derivation of the volume of a sphere which
was left unfinished by Liu [Lam & Shen 1985].

How Zu obtained what he called his ‘‘very close’ ratio 33 for 7 is not known.
This value is correct to the sixth decimal place, and as for the value of the seventh
decimal place a better indication is obtained from his other figures of 3.1415926
and 3.1415927.

A SURVEY OF CIRCLE MEASUREMENTS IN CHINA

Like all other early civilizations, the ancient Chinese took the value of the ratio
of the diameter to the circumference as 3 in their mathematical calculations [7]. As
time went by, they realized that this value was a rough approximation, and so
tried to improve it. Liu Xin [z], an astronomer and calendar expert of the first
century B.C., was said to have been one of the earliest to attempt the improve-
ment. This was first mentioned in the Sui shu [y] [387-388], which did not provide
any mathematical procedure and hence has led historians of mathematics to look
for evidence elsewhere.

When Wang Mang [ai] ascended the throne toward the end of the Western Han
(206 B.C.—A.D. 24), he commanded Liu Xin to construct a standard measure for
the kingdom. Liu Xin produced a vessel cut from a solid bronze cylinder and
called it the Jia liang hu [aj]. (For the words of the inscription on it, see the
Appendix, Section 3.) It was estimated that about a hundred Jia liang hu were
made for distribution throughout the entire empire [Sun 1955, 11]. One such vessel
is still being kept in the Palace Museum in Beijing. Chinese historians of mathe-
matics who had the opportunity to examine the vessel, including Li Yan [ak], Qian
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Baocong [al], Li Naiji [am], Sun Zhifu [an], and Xu Chunfang [a0], thought that
Liu Xin had contributed a new value of 7. Their conclusion was drawn from the
following procedure:

The diameter of the measure = V200 + 2 X 0.095 = 14.332 cun. Since the
area is given as 162 sq. cun, 7(14.332/2)2 = 162 or m = 3.1547.

This argument of attributing the new value of 7 to Liu Xin by an inverse
operation does not seem convincing. In a recent paper on the same subject Bai
Shangshu [ap] [1982, 75-79] pointed out that in his study of six different kinds of
standardized vessels for smaller capacities made by Wang Mang [ai}], he found
four different values of 7, namely 3.1547, 3.1590, 3.1497, and 3.1679. From this
inconsistency, Bai thought that it was unreasonable to suggest that Liu Xin as-
sumed 7 = 3.1547. Yet Liu Xin, being an astronomer and calendar expert, would
certainly not have used the ancient ratio of 3 in his mathematical calculations. His
task of constructing a standard measure called for precision, particularly in deal-
ing with solid objects. Furthermore, Sui shu |y] [387-388] says that Liu Xin was
prompted to find a new value of 7 to replace the old one. Thus, although the
theoretical record on his approach to the approximation of 7 is still wanting, it is
not too farfetched to suggest that Liu Xin did have some kind of improved value of
7 before constructing the standard vessels.

About a century later, Zhang Heng [aa] (A.D. 78-139) made the first explicit
effort to obtain a more accurate figure for 7. The information comes from Liu
Hui’s commentary on a problem in the Jiu zhang suanshu [d] regarding the deriva-
tion of a diameter of a sphere from its volume [Qian 1963, 156]. Liu Hui pointed
out that during the time of Zhang Heng the ratio of the area of a square to the area
of its inscribed circle was taken as 4:3. Following the empirical ratio, it was
thought that the volume of the cube to the volume of the inscribed sphere must
also be in the ratio 42:32, that is, D3:V = 16:9 or V = &D?3, where D is the
diameter of the sphere and V, its volume. Hence, the formula for finding the
diameter of a sphere from its volume is given in the Jiu zhang suanshu as D =
V/16V/9. Zhang Heng realized that the value of the diameter obtained in this way
fell short of the real value, and he attributed the discrepancy to the value taken for
the ratio. He thought that this error could be corrected by adding an arbitrary
value of 15D to the original formula, thus rectifying it to V = #%D3 + % D3 = § D3,
This means that the ratio of the volume of the cube to that of the inscribed sphere
is 8:5 and implies that the ratio of the area of the square to that of the circle is
V8:V5. From this, = was calculated as V10.

According to a reference by Zu Geng [ah] cited in the Kaiyuan zhan jing [aq]
(Kaiyuan treatise on astrology) [25b, 26a] of the 8th century, Zhang Heng com-
pared the celestial circle to the width (i.e., diameter) of the earth in the proportion
of 736 to 232, which gives 7 as 3.1724.

As both of Zhang Heng’s values were on the high side, Wang Fan [ab] (217-257)
investigated further the value of w. The Song shu |ar] (Standard history of Liu
Song dynasty) [675] says that, ‘‘having tested that 1 was a little long as diameter
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for the circumference 3, he [Wang Fan] corrected the circumference to 142 and
diameter to 45.”” This gives the value of 7 as 4% or 3.155. While Wang Fan’s
method of arriving at such a figure was not given in the historical sources, Yan
Dunjie [as] [1936a, 39-40] suggests that it could have been obtained soon after Liu
Hui proposed the value of 3.14 for 7. Since Wang Fan thought 7 greater than 3, a
small fraction x should be added to 3, with # = 3 + x. As Liu Hui considered
3.14 a slightly low value for 7, a small fraction y should be added to this, giving
7 = 3.14 + y. Taking y = {5x, we have 3 + x = 3.14 + ¥x, resulting in x = 75 or
= 5¢.

Yan Dunjie further suggested that perhaps the value of V'2/0.45 for = given by
Zhu Zaiyu [at] toward the end of the Ming dynasty could have been derived from
Wang Fan’s value. This is only a hypothesis. What appears certain, however, is
that after the Han period there was considerable interest in a plausible method for
approximating 7r based on theoretical foundation. The mathematician who in A.D.
263 succeeded in giving one was Liu Hui.

Liu strove for precision and refused ‘‘to follow the ancients’ (zhong gu |au)).
He aimed at ‘‘cutting the circle’’ continuously until ‘‘a limit is reached when the
shape of the polygon coincides with that of the circle’” so that the exact value
might be attained. As a pragmatic mathematician he advocated the value of = =
157 but, as a theoretician, hc believed that the true value of 7 might be ap-
proached as closely as possible by successive approximations. Whether Liu suc-
ceeded in ‘‘cutting the circle’ to the extent of attaining a 1536-sided polygon or
not is open to speculation. In Jiu zhang suanshu xichao tu shuo [aw] (Detailed
diagrammatic explanations of the ‘‘Jiu zhang suanshu’’), Li Huang [av] (d. 1811)
was the first to suggest that the ratio 3927 : 1250 was not Liu’s contribution but Zu
Chongzhi’s. This sparked a great controversy involving several eminent historians
of mathematics. The more cautious ones, including Li Yan [ak], Yan Dunjie [as],
Du Shiran [ax], and He Luo [ay], recognized Liu’s derivation of 7 only up to the
96-sided polygon and completely avoided the mention of #§23. Those who fer-
vently believed that Liu had established 333§ for = were Qian Baocong [al], Xu
Chunfang [ao], Wang Shouyi [az], Bai Shangshu [ap], Hua Luogeng [ba], He
Shaogeng [bb], Mei Rongzhao [bc], Shen Kangshen [bd], and Li Naiji [am]. Op-
posing this view and crediting Zu Chongzhi with the invention were the mathema-
ticians Yu Ningsheng [be], Yu Jieshi [bf], Sun Zhifu [an], Li Di [bg] [8], and
Donald Wagner [ 1978, 206-208].

What appears ambivalent in Liu’s commentary is the mention of Jia liang hu
[aj] in the Jin armory. Liu was said to have written his commentary two years
before the Wei [bh] kingdom was usurped by Sima Yan [bi], who established the
Jin [bj] kingdom (A.D. 265-420). But whether this was a complete commentary on
the whole text of Jiu zhang suanshu [d] is open to question. In fact elsewhere in
Sui shu [y] [429], it says that Liu was making a study and a comparison of the Jia
liang hu and the hu measure of his time when he wrote the commentary on
chapter 5 (entitled shang gong [bk]) of the Jiu zhang suanshu in 263. Neverthe-
less, Liu continued to use w = #{ for all the eight problems involving spherical
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and circular measurements in that chapter. Based on the fact that the same value
for = was also used in the previous chapters (ten problems in chapter 1 and two
problems in chapter 4), it may be assumed that Liu might not have had the
opportunity of seeing a Jia liang hu before he set out to write his commentary on
the fang tian chapter. This note about the Jia liang hu in the fang tian chapter
could have been an addendum when Liu made a revision and updating of the
whole commentary soon after the collapse of the Wei kingdom in 265. Therefore,
as a mathematician whose life straddled two kingdoms, it was proper for him to
mention the armory where the Jia liang hu was kept as the Jin armory. The
revision would have spurred him to make a thorough investigation and calculation
of the dimension of the Jia liang hu. He would have discovered that the vessel was
not a perfect measure and that the value for 7 obtained from the vessel was almost
the same as that he had derived earlier on. This realization led him to improve the
value for 7 by continuing the process of calculation of areas of polygons up to 192
sides. He finally arrived at = = 332] and was satisfied with it. It is no surprise that
the great mathematician of the Tang dynasty Wang Xiaotong [bl] praised Liu as
one who could stretch his ‘‘thought to the minutest detail’’ (si ji hao mang [bm])
[Qian 1963, 493].

Zu Chongzhi (429-500) came from a bureaucratic family of calendar experts [9].
The calendrical system of his time was the Yuanjia li [bn], compiled by Ho
Chengtian [bo] (370—447). Zu found the system inaccurate and therefore unsuit-
able for civil use. He made two very bold attempts to rectify the system, by taking
the precession of equinoxes (sui cha [bp]) into consideration, and by deviating
from the traditional 19-year cycle (i.c., the Metonic Cycle) by putting 144 interca-
lary months in every 391 years. To gather the necessary data he needed precise
mathematical techniques. It was for this rcason that he had to reexamine the
mathematical constants used in his computations.

Zu’s expertise in astronomy and mathematics was unquestionable. Apart from
successfully composing an astronomical system known as the Daming li [bq], he
also wrote a mathematical text called Zhui shu [x], which was prescribed as a
textbook for advanced students of mathematics in the official academies of the
Tang dynasty. While the treatise on the Daming li is still available in the Song shu
[ar] [192 ff.], the Zhui shu was purported to have been lost toward the end of the
Northern Song dynasty (960—-1127). The fact that students in the Tang academies
had to devote four out of their seven years to the study of this text suggests that it
must be an important and difficult treatisc on mathematics. Ironically, as Sui shu
[y1[388] says, ‘‘the official students were unable to understand the profoundity of
the text so it was subsequently abandoned and neglected altogether.”’

Qian Baocong [1923, 56-57] and Sun [1955, 9] assigned Liu credit for = = 34}
and believed that Zu continued where Liu left off. The ‘‘very close’’ value of 7= =
3% by Zu was a great advance in the history of mathematics (see [Yan 1936b, 518—
519]). Mikami [1913, 50] even suggested that it should be named after Zu. As
regards the familiar Archimedean ratio of %, the general consensus is that it was
not Zu’s discovery [10]. Prior to Zu it was thought that either Ho Chengtian [bo]
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or Pi Yancong [ac] (fl. 445) had already found a value of 7 = 3.1428 through an
interest in astronomy. What is intriguing is the derivation of the ‘‘very close”’
value of 7 = 333. Ho had earlicr invented a ‘‘method of averaging days’’ (tiao ri fu
[br]) in his astronomical system. He took two fractions, one known as the ‘‘strong
ratio”” and the other as the ‘‘weak ratio,”” to determine the fractional day part for
the synodic period. It has been suggested by Qian [1923, 57-58] that Zu might
have used a similar method, taking Liu’s % as the ‘“‘weak ratio’’ and Ho’s % as
the ‘‘strong ratio’’ such that % < = < %. By using Ho’s method of averaging,
he would have obtained the following ratio after the ninth iteration:

157 + (9 x 22) _ 355
50+ (9 x7) 113

Whether Zu obtained his ‘‘very close’’ ratio by the method suggested above is
questionable. Apart from the extreme precision that was required for specific
purposes, such as in calendrical calculations, mathematicians in general were
quite happy with the approximate ratio of 3. Li Chunfeng [w], for example,
employed 7 = % in almost all his mathcmatical commentaries. Onc can, in fact,
say that after Zu Chongzhi the development of 7= was in limbo. It was not until the
turn of the 14th century that new scholars probed into the value of 7. One such
person was the Yuan mathematician Zhao Yougin [bs], who returned to the ques-
tion of Zu’s approximation for 7. Following Liu’s use of inscribed polygons, Zhao
Yougqin continued the process persistently and reached a regular polygon of
16,384 (= 4 x 2'?) sides to derive m = 3.1415926, thus confirming Zu’s accuracy
[Ruan 1799, 333-345].

Some interest in the evaluation of 7 was evidenced by the Ming mathemati-
cians. Toward the end of the 16th and the beginning of the 17th century, Zhu
Zaiyu [at] found 7w = V'2/0.45 and 7 = 3.1426968, while Xing Yunlu [bt] adopted =
= 3.1126 and 7 = 3.12132034. Then Chen Jinmo [bu] and Fang Yizhi [bv] used =
= 3.1525 and 7 = $, respectively. Apart from these, there were other values such
as 33 and . None of these was, however, as accurate as Zu’s value [11].

There was another attempt to exhaust the value of 7 by the method of *‘cutting
the circle.”’ This is found in chapter 15 of Shu li jing yun [bw] (Collected basic
principles of mathematics), which was commissioned by Emperor Kang Xi [bx]
and edited by Mei Gucheng [by] and He Guozong [bz]. Starting from an inscribed
hexagon of radius 10'2, the mathematicians here found that the length of one side
of a regular 6 X 22-sided polygon was 121, with the sum of sides being
6283185307179. Again starting with a circumscribed regular hexagon and going up
to the same number of sides, they found that the side and sum of sides remained
the same. Hence, it was then fixed that = = 3.14159265 (a value correct to eight
decimal places).

Following the arrival of the Jesuits, the traditional approach to the evaluation of
m came to a halt. Mathematicians, like Ming Antu [ca] (d. 1765), Xiang Mingda
[cb] (1789-1850), Li Shanlan [cc] (1811-1882), and Zeng Jihong [cd] (1848-1877),
began to evaluate 7 by analytical methods.
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APPENDIX: TRANSLATION OF L1u’s METHOD ON CIRCLE MEASUREMENT
[Qian 1963, 103—-106]

[Section 1]

If half the circumference [of a circle] is the length and half the diameter is the width, then the product
of the length and width gives the area [of a circle]. Let the diameter of the circle be 2 chi [e]. The length
of one side of a hexagon inscribed in the circle is equal to the radius. The ratio of the diameter to the
perimeter [of the hexagon] is 1 to 3. Next, referring to the diagram [12], if the radius is multiplied by
one side of the hexagon and then by 3, the product obtained is the area of an inscribed dodecagon. If the
circle is cut (ge [ce]) again so that the radius is multiplied by one side of the dodecagon and then
multiplied by 6, the product obtained is the area of an inscribed polygon of 24 sides. The more finely
[the circle] is cut, the less loss there is [in area]. Cut it again and again until one is unable to cut further,
that is, when the shape [of the polygon] coincides with that of the circle and there is no loss [in area).
Beyond one side of a polygon [from its mid-point to the circle], there is a remaining portion of the
diameter. Multiply this remaining portion by a side of the polygon to give a rectangular area which
extends beyond the arc [of the circle]. When a side of the inscribed polygon becomes so fine that it
finally merges with the [circumference of the] circle, then there is no remaining portion of the diameter.
When no remaining portion of the diameter is shown, this means that the area does not protrude out.
When a side [of an inscribed polygon] is multiplied by the radius, [this implies that] in the process of
extending the polygon, the number of sides is doubled. This is why half the circumference multiplied
by the radius is the area of the circle. The relation of circumference and diameter considered in this
manner gives the most satisfactory result.

The ratio of circumference to diameter is in fact not 3 to 1. The figure 3 attached to the circumference
actually means that the perimeter of an inscribed hexagon is three times the diameter. Hence, if the
ratio [i.e., 3] is used to compute the length of an arc, the result obtained is not the arc but the chord.
The value of this ratio was, however, passed on from generation to generation indicating the reluctance
of the people to strive for accuracy. The learners, too, just followed the ancients and simply learned
theincorrect method. Nevertheless, withoutconcrete examples, itisdifficult toargue on[thisinaccuracy].
Generally speaking, the forms of things around us are either square or round. If we understand the
ratio of their forms at close range, we can also determine this ratio when viewed from afar. Considering
the ratio in this manner, we can say that its use is indeed far and wide. For this reason, 1 have been
using drawings for verifications in order to construct a more precise ratio. However, 1 fear that if only
the method is given, the various numerical values involved may appear obscure and difficult to
explain. Therefore, I do not consider it laborious here to show the derivation of the ratio in various
stages with the necessary commentaries.

[Section 2]

Method of cutting an inscribed hexagon into an inscribed dodecagon. Put down [on the counting
board] the diameter of the circle, 2 chi [e], and halve it to obtain 1 chi, which is the length of one side of
the hexagon. Let the radius of length 1 chi be the hypotenuse (xian [cf]); half of a side of the hexagon, 5
cun [v] [5], be the gou [cg] (the shorter orthogonal side of a right-angled triangle); and it is required to
find the gu [ch] (the longer orthogonal side). When 25 cun, which is the square of the gou, is subtracted
from the square of the hypotenuse, there is a remainder of 75 cun. Find the square root up to the place
values of miao [t] and hu [u]. Again move the number in the fu [ci] row back by one jump [of two
places] to find the other ‘‘minute numbers’’ (wei shu [cj]) [13]. These ‘‘minute numbers’’ have no place
names, so convert them into a fraction with 10 as the denominator so that they are approximated to #
hu lu). Hence the gu is 8 cun 6 fen [q) 6 li [r] 2 miao [t] 58 hu [u). Subtract this from the radius to leave a
remainder of 1 cun 3 fen 3 li 9 hao [s] 7 miao 4% hu which we shall call the smaller gou [that is, the
shorter orthogonal side of a smaller right-angled triangle]. Then half the side of the hexagon will be
called the smaller gu and it is required to find the hypotenuse. The square [of the hypotenuse] is
267949193445 [square] hu, after the remaining terms are discarded. The square root of this gives the
length of one side of a dodecagon.

Method of cutting an inscribed dodecagon into an inscribed polygon of 24 sides. Again, let the
radius be the hypotenuse and half the side of the dodecagon be the gou. From this, find the gu. Put
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down the square of the smaller hypotenuse of the preceding [triangle] and divide it by 4 to obtain
66987298361 [square] hu after the remaining terms are discarded, and this is the square of the gou.
Subtract this from the square of the hypotenuse and find the square root of the difference to obtain the
gu, which is 9 cun 6 fen 5 li 9 hao 2 miao 5% hu. Subtract this from the radius to give a remainder
of 3 fen 4 li 7 miao 4% hu, which is called the smaller gou; half the side of the dodecagon is called the
smaller gu and from these, the smaller hypotenuse is derived. Its square is 68148349466 [square] hu
after the remaining terms are discarded. The square root of this is the length of a side of a polygon of 24
sides.

Method of cutting an inscribed polygon of 24 sides into one of 48 sides. Again, let the radius be the
hypotenuse and half the side of the polygon of 24 sides be the gou. From this, find the gu. Put down the
square of the smaller hypotenuse of the preceding [triangle] and divide it by 4 to obtain 17037087366
[square] hu after the remaining terms are discarded, and this is the square of the gou. Subtract this
from the square of the hypotenuse and find the square root of the difference to obtain the gu, which is 9
cun9 fen 1li 4 hao 4 miao 4% hu. Subtract this from the radius to give a remainder of 8 li 5 hao 5 miao 5%
hu, which is called the smaller gou; half the side of the 24-sided polygon is called the smaller gu and
from these, the smaller hypotenuse is derived. Its square is 17110278813 [square] hu after the remain-
ing terms are discarded. The square root of this is I cun 3 fen 8 hao 6 hu neglecting the lower terms and
this is the length of the smaller hypotenuse, which is also the length of a side of an inscribed polygon of
48 sides. Multiply this by the radius 1 chi and also by 24 to obtain 3139344000000 [square] Au. Divide by
10000000000 to obtain 31332 [square] cun which is the area of an inscribed polygon of 96 sides.

Method of cutting an inscribed polygon of 48 sides into one of 96 sides. Again, let the radius be the
hypotenuse and half the side of the polygon of 48 sides be the gou. From this find the gu. Put down the
square of the hypotenuse of the preceding [triangle] and divide it by 4 to obtain 4277569703 [square] hu
after the remaining terms are discarded, and this is the square of the gou. Subtract this from the square
of the hypotenuse and find the square root of the remainder to obtain the gu which is 9 cun 9 fen 71i 8
hao 5 miao 8¢ hu. Subtract this from the radius to give a remainder of 2 li | hao 4 miao l¥5 hu which is
called the smaller gou; half the side of the 48-sided polygon is called the smaller gu and from these, the
smaller hypotenuse is derived. Its square is 4282154012 [square] hu after the remaining terms are
discarded. The square root of this is 6 fen 5 li 4 hao 3 miao 8 hu, neglecting the lower terms, and this is
the length of the smaller hypotenuse which is also the length of a side of an inscribed polygon of 96
sides. Multiply this by the radius 1 chi and also by 48 to obtain 3141024000000 [square] hu. Divide the
area by 10000000000 yielding 314¢% [square] cun, which is the area of an inscribed polygon of 192
sides. Subtract the area of the 96-sided polygon from this to obtain a remainder of 432 [square] cun and
this is called a residual area (cha mi [ck]). Double this amount [so that the numerator of the fraction]
becomes 210 and this amount represents the area outside the 96-sided polygon extending beyond the
arcs [of the circle]. This can be said to be the sum of the products of the chord (xian [cf]) and the sagitta
(shi [cl]). Add this amount to the area of the 96-sided polygon to obtain 314432 square cun which gives
an area covering the circle and protruding beyond it. This is the reason why 314 [square] cun which is
the area of the 192-sided polygon to the nearest integer is taken as the standard area of the circle after
the smaller terms are discarded. Divide the area of the circle by its radius, 1 chi, and then double this to
obtain 6 chi 2 cun 8 fen which gives the circumference. Squaring the diameter gives a square area of
400 [square] cun. Compare the area of the circle with this, and obtain the ratio of the areas of the circle
to the [circumscribed] square as 157 to 200. If a square has 200 [square units] then its inscribed circle
has 157 [square units]. The rate for the circle actually contains some smaller units as well. Referring to
the diagram of the arc of a circle, we see a circle inscribed in the square and a square inscribed in the
circle. The arca of the inner square is half the arca of the outer square. If the area of the circle is 157
[square units] then the area of the inscribed squarc is 100 [squarce units]. Next, if the diameter, 2 chi, is
compared with the circumference, 6 chi 2 cun 8 fen, the ratio of the circumference to the diameter is
obtained as 157 to 50. Actually, the circumference still has other smaller units.

[Section 3]

There was in the armory of the Jin dynasty a copper Au [cm] measure constructed by Wang Mang
[ai] during the Han dynasty. The inscription on it reads: ‘‘The standardized chia liang hu [aj] measure
has a square with each side 1 chi long, and outside it a circle. The distance from each corner of the
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square to the circle is 9 li 5 hao. The area of the circle is 162 [square] cun, the depth is 1 chi and the
volume is 1620 [cubic] cun. The measure has a capacity for 10 dou [cn] (bushels).”” If we use the
present ratio {i.e., %] to compute, we obtain the area [of the circle] as 161 cun and a fraction. The two
values are very close indeed. But as the present ratio is not precise, we have to consider the area of the
dodecagon as a basis to augment or diminish the area of 3% [square] cun. This yields &% [square] cun.
Add this to the area of the 192-sided polygon to obtain 31455 [square] cun as the area of the circle. Put
down the square of the diameter 400 [square] cun and compare this with the area of the circle. If the
area of the circle is 3927 then that of the square is 5000. Taking this as the ratio [i.e., #33§] we can say
that the area of the inscribed circle in the square of 5000 [square units] is 3927 [square units] and the
area of the square inscribed in the circle of area 3927 [square units] is 2500 [square units]. Divide the
area of the circle 314% [square] cun by its radius 1 chi and double the result to obtain 6 chi 2 cun 8% fen
which gives the circumference. Take the diameter 2 chi and compare it with the circumference, getting
1250 for the diameter and 3927 for the circumference. The ratio [of the circumference to the diameter]
thus obtained has been exhausted to very minute numbers. However, for practical purposes, the
former ratio [i.e., %] is still a simpler one. The area of a 3072-sided polygon is computed from a side of
a 1536-sided polygon. When the lower terms are discarded, the ratio obtained is the same as the
previous one. In this way, the ratio is again verificd.

NOTES
1. The Jiu zhang suanshu is printed in [Qian 1963, 81-258]. The data assigned to this book is
between 200 B.C. and A.D. 200; see [Needham 1959, 24-25].

2. There is a fairly large literature on Liu’s method written in Chinese, of which one of the more up-
to-date is [Bai Shangshu 1983, 35-53]. In English, Liu’s method is found in [Mikami 1913, 47-49],
which contains some misprints, and, more briefly, in [He Shaogeng 1983, 90-98]. In our translation,
we have tried to give as close an interpretation of the original text [Qian 1963, 103-106] as possible.

3. However, the ancient Greeks were aware that the area of a circle to the square of its radius is a
constant ratio [Euclid, Bk. XII, Prop. 2].

4. The phrase ‘‘counting board’’ means any flat surface suitable for the placement of rod numerals
and should not be confused with the specially constructed counting boards of medieval Europe.

5. Note that 10 cun [v] = 1 chi [e] and 10 chi [e] = | zhang [ae].

6. We would like to thank Lam Chih Chao and Lam Chih Ming for the software program.

7. This is evident in the earliest mathematical texts of Zhou bi suanjing [co) (The arithmetic classic

of the gnomon and the circular paths of heaven) and Jiu zhang suanshu, as also in the Kao gong ji [cp]
(Artificer’s record) of the Zhou li [cq] (Record of the rites of the Zhou dynasty).

8. For an objective review of the polemic of this problem, see [Li Di 1982, 35-44].

9. For a brief biography of Zu Chongzhi, see [Li Di 1962]. See also [Ruan Yuan 1799 353, 91-105].
10. See [Qian 1923, 59; Yan 1936b, 43; Sun 1955, 9].

11. For a brief survey of this period, see [Xu 1957, 48].

12. The diagram is missing, but it should be similar to Fig. 1.

13. For the square-root extraction procedure, see [Wang & Needham 1955, 350-356; Lam 1969,
93-97].
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[V.] THE RATIO OF THE DIAMETER OF ANY CIRCLE TO
ITS CIRCUMFERENCE IS ONE [THAT IS, IS THE SAME FOR
ALL CIRCLLS].

For example, lct there be two different circles, the circles ABG, DEZ
[see Fig. 38]. Let their diameters be BG, the diameter of circle A5G, and
EZ, the diameter of circle DZZZ. 1 say, therefore, that

diameter BG/circum ABG = diameter ZZ/circum DEZ,
which is dcmonstrated as follows:

If the two ratios were not equal, then let line BG/line ABG = EZ|HU,
where line AU is longer or shorter than line DEZ. First I shall posit
that it is shorter, if that is possible. And I shall bisect line /U at 7" and
I shall erect perpendicularly upon line HU at point /7 a line cqual to

35 ct impossibilc om. Ar. bic edition but, quite properly, is not
36-37 medictatis.... circuli: — ¢ « — (LG) i.n .thc Paris Arabic manuscript.)) (And
37 linee. . .ipsum: ol — Le iis a{reaq’)r Kuonn f/:o;// this that the multi-
(ircumference ABG) e - plication of the radius by the half of any
A assigned arc is equal lo the area of the
38 post circuli add. Ar. — ¢ o | - (ABG) sector contained by this arc and Ino radii
39-45 Lt....figure: gl Ol w0l 5 extending 1o the exiremilies of the are.)
b b Ll Foas 43S s S EZi—5e0—(ED)
of sl 3 pll [si A 5—8 Dico...demonstratur om. Ar.

oW pled) UL sl 05 W38 0 g il una: besl 5 o5 4 0
ol :‘ s sy ol Wb O s (And so0 if it is not as we claimed)
- . 10,13 EZ:—s5—(DE)
o o b 12 si...possibile om. Ar.
((The section in brackets is in the Ara-
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stantem super lineam AU orthogonaliter, que sit linea K. Et com-
plebo quadratum K7, Et quoniam linea /7K est equalis medietati linee
IZZ, et linea HT est brevior medietate linee DZL, erit quadratum K77
minus superficie circuli DEZ. Verum, proportio linee K ad lineam
HT estsicut proportio medietatis linee G ad medietatem linee ABG.
Et multiplicatio linee K/ in lineam A7 est superficies K7". Et multi-
plicatio medietatis linee BG in medietatem lince 1BG est superficies
circuli A18G. Ergo proportio supertficiei circuli A18G [ ad quadratum
KT est sicut proportio medietatis linece BG ad lineam K/ duplicata.
Sed proportio medietatis linee G ad lincam K7/ multiplicata est sicut
propottio linee G ad duplum linece K7/ duplicata. Sed duplum linee
KH est equale linee ZZ. Ergo proportio supetficiei circuli ABG ad

25
quadratum K7 est sicut proportio linee BG ad lincam ZZZ duplicata,
ac proportio superficiei circuli ABG ad supetficiem circuli DEZ est
sicut proportio B8G ad £Z duplicata, sicut declaravit Euclides. Ergo
proportio supetficiei circuli 418G ad superficiem circuli DEZ, et
so ad quadratum K7, est una. Lrgo sunt equales. Sed quadratum K7°
iam fuit minus superficie circuli DEZ, quod quidem est contrarium
et impossibile. Non est ergo linea /U brevior linea DEZ.
Et per huiusmodi dispositionem scitur quod linea /U non est
longior linea DEZ. Et cum linea /U non sit longior neque brevior
s linea DIEZ, tunc est equalis ei. Bt proportio linee BG ad lineam ABG
14 tinea om. T 22 lineam om. T [ duplicata: multiplicata T°
15 quoniam: quia 7~ 23-24 Sed... duplicata om. H bic sed cf.
16 DZE: DEZ H var. lineae 21
17 KH ZmFHRT HK P 23 medietatis om. 7
18 BG: AG H 24 lineez om. 7' | KH: HK T’
19 KH: HK A/ 24-25 Sed.... Ergo om. T
20 medietatis ow. T | BG: KG I 25 est: erit F{

21 post ABG! add. H Sit igitur proportio
medietatis linee BG ad lineam KII
multiplicata sicut proportio linee BG
ad duplum linee KH duplicata (istud
totum om. PMal hic; ¢f. lineas 23-24) |
Ergo: etergo I

21-22 proportio... sicut: sicud est T

21 ABG?2: ADG /{

15—16 Yt...DZLE om. ~lr.

21-37 Et....voluimus: —.Lﬂ—clu IR
@&l—cb—w— Gy‘—i}‘:d‘
;.:..3 th—’ ;L:-O—CU—Q_,:L.A; dl—a.\—
o8l Gy B ekt — o —dl—e s

37

27 ac PZm aut H a Ma

28 sicut... Euclides: per euclidem T°

31 quidem om. T

32 Non... FIU: Igitur linea IHU non est
T | ergo om. I

33—34 Bt... DEZ om. Ma

33—35 Lt.... ei: nec longior igitur est
equalis 7'

S sles, —Gg—-&-—-e;-—;..,...i ol
lz.al_....’\i—ag|~3;b‘_l|—a_ja—3;l.s
— s w——cg'—i_;b-—d‘—-bﬂ«
— 51 JL...—.LLS-CL.B el —5 e
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1/2 line EZ. This is line K. And I shall complcte square K7". And since
line A/K = 1/2 linc L£Z, and line A7 < 1/2 line DZE, square K" <
arca of circle DEZ. Now line KH|line HT" = 1/2 line 8CG/1/2 line ABG,
and (KH - HT) = area K7, and (1/2 line BG - 1/2 line ABG) = arca
circle ABG, and area circle ABG/square K7" = (1/2 line BG/ line KH)?.
But (/2 BG/ line KF)? = (linc BG/2 linc KH)?, and 2 linc KH == linc
EZ. Therefore, arca citcle ABG[squate K7' = (B8G[EZ)?, and arca cizcle
ABGarca citcle DEZ = (BGJEZ)?, as Euclid showed. Therefore, area
citcle ABG/atea citcle DEZ = arca citcle ABG/[square KT Therefore,
arca circle DEZ = square K7. But carlier [it was inferred from the as-
sumption that] square K7" < area circle DEZ. This indeed is a contradic-
tion and is impossible. Therefore, line AU is not less than line DEZ.

By a similar procedure it is [also] known that line AU is not longer
than line DEZ. And since line AU is not longer and is not shorter than
line DEZ, then it is cqual to it; and line BG(line ABG = ZE[HU. And

U B
E
T
A D
K H
b4
G
Fig. 38

Note: I have changed diamcter £Z from a horizontal to a vertical orienta-
tion, in conformity with the drawing accompanying the Arabic text.

— L gl Gl lia e il 05— e s
W Jte j—5e5—tuz J“;""C
- L BB o bl ) Gl S
J‘—Cy—-&:‘:\r—jo.\—.’agf- dl—ss
W gosls & iy —pol—bp

Lyl Loy
(And so KT3circle ADBC = TH |
(4 BG: — (4 DE | $BGY: = (DE|
BG):. And Euclid bas already demonstra-

38

ted that (DE|BG)* = circle DZE]circle
ABG. And s0 K12 | circle ABG =
circle DEZ | circle ABG. And so KT
= circle DEZ. But it was smaller than it.
This is a contradiction. And so line HU is
not shorter than circumference DEZ; and
by a similar disposition it is demonstrated
that it is a lot longer than it. And so
DE | circum DEZ = BZ | circum ABG
and it is thus for any two circles other than
these. And this is what we wished.)
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est sicut proportio Z/Z ad HU. Tit linea HU est equalis linee DLZ.
Jam ergo ostensum est quod proportio diametri omnis circuli ad
lineam continentem ipsum est una. Et illud est quod demonstrare
voluimus.

[VI] CUM ERGO IAM MANIFESTUM SIT ILLUD QUOD
NARRAVIMUS, TUNC OPORTET UT OSTENDAMUS PRO-
PORTIONEM DIAMETRI CIRCULI AD LINEAM CONTINEN-
TEM IPSUM.

Et operabimur in hoc per modum quo operatus est in eo Archime-
nides. Nam nullus illius scientie invenit aliquid usque ad hunc nostrum
tempus preter ipsum in eo quod nobis apparuit. Et iste modus in
inveniendo proportionem diametri ad lineam continentem, etsi non
ostendat proportionem unius eorum ad alterum ita ut per eam racio-
cinetur secundum veritatem, tamen significat proportionem unius
eorum ad alterum ad quemcunque finem voluerit inquisitor huius
scientie de propinquitate, scilicet si voluerit inquisitor scire proporti-
onem unius eorum ad alterum, verbi gratia, ut perveniat in propin-
quitate illius ad hoc, ut non sit inter ipsam et inter veritatem propoz-
tionis unius eorum ad alterum, cum posita fuerit diametrus unum,
nisi minus minuto, quod est pars sexagessima diametri, possit / illud.
Et si voluerit pervenire in propinquitate illius ad hoc, ut non sit ei
finis inter ipsam et inter veritatem proportionis unius eorumad alterum
nisi minus secundo, quod est pars sexagesima minuti, possit illud.
Et si voluerit ut perveniat in propinquitate illius ad quemcunque

36 ZE: linee ZE H | Et: sed T | lince pars 6Go* minuti, et post illa ut perveniat
DEZ tr. T ad quantum|cun]que finem voluerit

37 Iam...quod: ergo 7"/ diametri omnis computator raciocinari. 7°
tr. T 1-173 Cum....quod? om. §

38 Et...estom. T 3 ad: et /7|

38-39 demonstrare voluimus A7 tr. PZm 4 ipsam [/ |
declarare voluimus Ma s in hoc om. I{ | in eo om. I

1 [VI]: 7 MaR 6 ad hunc om. H

1-24 Cum.... illud: Que igitur sit propor- 10 de significat scr. P mg et Zm supra i.
tio dyametri circuli ad lineam conti- ostendit | post significat add. MaR i.
nentem ipsum operabimur sicud Ar- ostendit

chimenides solus, ita quod non fallatur  11-12 huius...inquisitor ow. R (sed in
inquisitor in propinquitate veritatis PZwFH Ma)

proportionis ad alteram nisi minus 18 de proportionis scr. P. mg. et Zm supra
minuto, quod est pars Go* dyametri. Et vel mensure [ ante proportionis add. Ma
si voluerit quod non medium nisi vel mensure

secundo servando (/ del. ?), quod est 19 pars sexagesima sr. H

39
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line HU = line DEZ. Thercfore, it has now been demonstrated that
the ratio of the diamecter of every circle to its circumference is one. And
this is what we wished to demonstrate.

[VI] HENCE, SINCE WHAT WE HAVE RECOUNTED HAS
NOW BECOMLE EVIDENT, THEN WE MUST SHOW [THAT IS,
FIND] THE RATIO OF THE DIAMETER OF A CIRCLE TO ITS
CIRCUMFERENCE.

And we shall proceed in this matter by the method which Archimedes
uscd for it. For up to our time no one except him has discovered any knowl-
cdge of this, so far as we have secen. And this method of finding the ratio of
the diamecter to the circumference, although it does not reveal a true
ratio that can be reckoned with, still does yicld a ratio of the one to the
other which is an approximation to any limit thc investigator of this
subject desires. That is, if the investigator wishes to know the ratio of the
one to the other approximately so that, for example, betwcen it and the
true ratio there is less than a minute, i.c., a sexigesimal part of the diameter
when the diameter is posited as one, that could be done. Andif he wished
to find an approximation of this to that so that less than a second, i.e.,
1/6o of a minute, exists between it and the true ratio, that could be done.
And if one wished to achieve an approximation of one to the other to any

1-4 Cum...ipsum: Jepdl JI Ll & 5o 5 5 Et...in hoc om. Ar.
(Then let us investigate the ratio of the 12—24 scilicet....illud om. Ar.
diameter to the circumference)

40
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finem voluerit post illa duo, possit illud per illud quod narravit Archi-
menides. Et usi sunt hoc modo propinquitatis in omni computatione
in qua cadunt radices surde, cum computator vult raciocinari per
quantitatem eius. It erit hoc ita. Incipiamus ergo declarare illud.
Lineemus ergo circulum A7B, cuius diameter sit 4753, et ipsius
centrum sit punctum G [Fig. 39]. Et protraham ex centro G lineam
GZ continentem cum linea G B tertiam anguli recti. Iit erigam super
punctum 53 linee B lineam BZ orthogonaliter. Manifestum est igitur
quod arcus qui subtenditur angulo BGZ est medietas sexte circuli
ATDB et quod linca BZ est medietas lateris exagoni continentis cir-
culum 178, Lt dividam angulum BGZ in duo media cum linea GE.
Et dividam angulum BGLE in duo media per lineam GU. Et dividam
angulum BGU in duo media per lineam GD. Lt dividam angulum

24 de Bt...ita ser. P mg. et Zm mg. (et add.
MaR post eius): in alio, cum ergo hoc
sit ita [ ante Incipiamus add. MaR mg. 8

25 circulus 7" [ sit om. T°

25—26 et...punctum: centrum 7

26 centrum sit ZmH Ma mg. P

28 igitur om. T

29 sexte PZmw seste Ma sexti FI

31 BGZ: GBZ T’

32 BEt...GU om. T | BGE: BEG H

33 BGU PZmMa BGN HT (-N pro -U
hic et ubique in FIT)

27 GZ: — >z — (G D) ((Note: The Arabic
printed text has > (/) everywhere
Gerard has Z; I am not noting any
other place. Incidentally, the Paris
Arabic MS has » (1) for £ (G) and

an ambiguous mark))

41

33 BGU: — » & — (BG) ((Note: This is
~J ¢« — in the Paris MS.)) / GD:
—iz-
(GZ) ((Note: Arabic text has ; (Z)
wherever Gerard has D.))
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desired limit beyond these two, that could be done by the method which
Archimedes has recounted. And this method of approximation is used
in every computation involving surd roots when a computator wishes to
calculate with such a quantity. And it will be thus. Therefore, let us begin
to show this.

A

—

V4 E up[s\
H M

Fig. 39
Note: In MSS P and £/, both halves of the proof atc represented on one
drawing, although that drawing is rcpcated. For Fig. 39 I have left off the
inscribed figure covering the second half of the proof (sce Fig. 40). Also,
line GM, which is in the original Archimedcan proof, is missing in this text
and its drawing.

Let us draw circle .A7°B, whose diameter is A8 and whose center is
point G [see Fig. 39]. And I shall protract from center G line GZ, which
contains with line GB a third of a right angle. And I shall erect line BZ
perpendicularly on point B of line GB. It is evident, thercfore, that the
arc which is subtended by / BGZ is 1/2 of 1/6 of citcle ATB and that
line 37 is 1/2 of a side of a hexagon containing circle A7°3. Then I shall
biscct /£ BGZ by line GE, and / BGE by line GU, and /. BGU by line

42
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BGD in duo media per lineam G/. Manifestum est igitur quod arcus

35 qui subtenditur angulo BGH est pars centessima et nonagessima

secunda circuli A7 B, et quod linea B/ est medietas lateris figure
habentis nonaginta sex latera continentis circulum .47 B.

Cum ergo hoc sit ita, tunc nos ponemus lineam GZ trecentum et

sex propter facilitatem usus huius numeri in eo quod computatur.

so  Cum ergo fuerit linea GZ trecentum et sex, erit quadratum eius nona-

ginta tria millia et sexcentum et triginta sex. Et erit linea BZ centum

et quinquaginta tria, quoniam angulus BGZ est tertia anguli recti et

angulus GBZ est rectus. Et erit quadratum linee BZ viginti tria millia

et quadringenta et novem. Et quadratum linee GB septuaginta millia

ss et ducenta et viginti septem. Ergo linea GB est plus ducentis et

sexaginta quinque. Sed proportio duarum linearum BG, GZ agrega-

tarum ad BZ est sicut proportio GB ad BE, propterea quod linea GE

dividit angulum BGZ in duo media. Et due linee BG, GZ agregate

sunt plus quingentis et septuaginta uno. Et linea BZ est centum et

so quinquaginta tria. Exgo proportio GB ad BE est maior proportione

quingentorum et septuaginta unius ad centum et quinquaginta tria.

Ergo linea G B erit plus quingentis et septuaginta uno, cum fuerit BE

centum et quinquaginta tria. Et quadratum GB est plus trecentis et

viginti sex millibus et quadraginta uno. Et quadratum BE est viginti

ss tria millia et quadringenta et novem. Ergo quadratum GE est plus

trecentis et quadraginta novem millibus et quadringentis et quinqua-

ginta. Ergo linea GE est plus quingentis et nonaginta uno et octava

/ unius.
34 igitur PZmHMa om. T ergo R mg. 23409
36 est: erit A 44 quadringenta AMal quadreginta R
38-39 Cum...'sex: tunc T quadriginta P
38 trecenta A 45 et! om. H | Ergo: igitur T | GB : BG
39 huius om. T Zm | cum ducends desinit T

40 fuerit: fuit A | Cum...eius: ponamus 46 GZ: EZ H
lineam GZ trecentum Bt 6 cuius linee §1ad:ac A

quadratum necessario erit 77 52 fuerit: fuerit positum A
41 milia H bic et ubique §3~54 trecentis...millibus: 300 et 26000
42 quoniam: quia 7° H
43 BZ ZmMaR GZ PH 55 quadratum : 4 A

43—44 viginti...novem de/. m. rec. P et add. 56 trecentis...millibus: 300 et 49000 H

38 Cum...ita om. Ar. 40 Cum...sex om. Ar.
39 COMPUtAtUr: (a5 (investigated) 42-43 et?...rectus: — > @ z —(GBD)
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GD, and £ BGD by line GH. It is evident, therefore, that the arc which
is subtended by angle BGH is 1/192 of circle AT B and that line BH is
1/2 of a side of a figure having 96 sides which contains circle 47 8.

Since, therefore, this is so, then let us assume line GZ to.be 306 because
of the facile utility of this number for computation. Therefore, since
GZ is 306, GZ% = 93,636. And line BZ = 153, since £ BGZ = (1/3) - 90°
and £ GBZ = 9o°. And BZ% = 23,409, and GB? = 70,227. Hence,
line GB > 265. But (BG + GZ)/BZ = GB|BE because line GE bisects
£ BGZ. And(BG + GZ) > 571 and line BZ = 153. Hence, (GB/BE) >
(571/153). Hence, line GB > 571, when BE = 153. And G52 > 326,041.
And BE? = 23,409. Hence, GE2 > 349,450. Hence, line GE > j5913.
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APPENDIX.
By K. BALAGANGADHARAN

1

The main theorems of the foregoing article are collected below; underneath each
theorem, its enunciations in the original §loka form and in English are given. In Theorems
3-12, C denotes the circumference of a circle whose diameter is D. The abbreviations
employed to denote the references are all those of the article.

I may mention at the outsct that the translations appended to the slokas are not
literal, aiming as they do at clarity rather than mere verbal faithfulness to their originals.
As for the $lokas themselves, my sources have been the Trivandrum edition of Karana-
paddhati and the MSS. of Tantrasatigraha in the Trippunittura Sanskrit College Library
and the Adyar Library. All my quotations from 7', barring those under Theorems 6, 11,
12, 13, follow the Trippunittura MS., the quotations under these theorems following
Whish and the Adyar MS.

THEOREM 1. arctant ={— §t3+ét5—. .. (larc tan t| < w/4)
Sloka :
STRTHA EATRAIIWA: FIEATAAT FF
saran fafrerarfenss aaces wmelq |
FAT FNSET q7 G FoATATATRN-
Farsagdecascang i staraafearay 1
[K (T.S.S.), 19, chap. VI.]

Translation.—[Take any circular arc, as in the accompanying figure, whose ‘* abscissa
is not less than its “ordinate”.] Multiply the ‘“ordinate’ of the arc by the semidiameter
and divide it by the ‘“‘abscissa”. This gives the first term. Multiply this term by the
square of the ‘“‘ordinate” and divide it by the square of the abscissa; a sccond term results.
Repeat the process of multiplying by the square of the ordinate and dividing by the
square of the abscissa. Thus obtain successive terms and divide them in order by the
odd integers1,3,5, . . . Ifnow the terms whose order is odd are added to, and the terms
whose order is even subtracted from the preceding, what remains is the circumference.

r

Fia. 3.
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That is to say, in the figure (with AOP < 45°).

PM 1 PM3 1 PM5

Remarks.—(i) The words “ ordinate’’ and “abscissa’ and “arc” in the English transla-
tion do duty for the Sanskrit sq7 (literally bowstring) #Yfe and g7q (bow) respectively.

(ii) The restriction on the length of the arc is mentioned by the commentator.

TrEOREM 2. If, in Fig. 3, AOP < 225, then

. 1 (arc AP)®
PM—:-&I'C AP-E—OT)Z_—’
1 PM3

arc AP‘;PM+6 oM
Sloka :
erAIEAYSS AR e sfawaaafsia |
freamfag fafssat w39, aqasermisagseT: 1
[K * (T.8.8.), 19, chap. VI.]

Translation.—The arc, when small, diminished by the sixth part of its own cube
divided by the square of the semidiameter, becomes the ordinate; and often, when small,
the arc is equal to the ordinate increased by its cube divided by six times the square of
the semidiameter.

Remarks.—(i) As in Theorem 1, the restriction on the arc is due to the commentator.

(ii) The English ““ ordinate  now serves for the Sanskrit fgfssT.
THEOREM 3. C =4/12 D{l———l-—+—l—— ——L+ .. }
3.3 5.32 7.3%

Sloka :
sqTHeT [XfAgaTa] ST B |
aaeTacReTeAIT arafzss FAREIT 0
FIRITAEATI Sy T |
fawar=a ¥ @R TEEw iR

[T, chap. I1.}

Translation.—Extract the square root of twelve times the diameter squared. This
is the first term. Dividing the first term repeatedly by 3, obtain other terms: the second
after one division by 3, the third after one more division and so on. Divide the terms

in order by the odd integers 1, 3, 5, . . . ; add the odd-order terms to, and subtract the
even-order terms from, the preceding. The result is the circumference.
1 1 1 1

* The same verse occurs in 7, chep. II, with the last pada replaced by ¥ISIQT wafa
ATqATARATT |
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Sloka :
TATSAGEAREA: JIRAT Frosaarermgart |
T TP ARV T FATAIT TR EGEET: |
[K (T.S.S.), 16, chap. VI.]

Translation.—Divide four times the diameter by each of the odd integers 3, 5, 7, . . .
Take away every quotient whose order is even from the one preceding it. Subtract from
four times the diameter the combined result of all such small operations. This gives the
exact value of the circumference.

, 1 1 1
THEORRM 5. (= 3D+4=D{33_3 —pmstmE—m— }
S’low : . . a
STATEAGIOAT, TS SR A o |
oAt e A Fearfy afdaaia:
[K* (T.8.S.), 16, chap. VI.]
Translation.—Divide four times the diameter separately by the cubes of the odd
integers, from 3 onwards, diminished by these integers themselves. These quotients

alternately add to and subtract from thrice the diameter. The circumference is again
obtained.

. 1 1 1
THEOREM 6. C—16D{15+4.1—35+4‘3+55+4'5—. . }
Sloka :

FATSATEAA! TEATALATRATEAT THFAT: |
arfreeerfaEETETETEY g fawwa
FRGAN IR erfasesgraaye: afkfa
(T, chap. IL.]
Translation.—Sixteen times the diameter is divided by the fifth powers of each of
the odd integers 1, 3, 5,...... , increased by these integers themselves. The quotients

obtained in this order are added to, or subtracted from, the preceding, according as their
order is odd or even. What remains after these operations is the circumference.

1 1 1
THEOREMS 7 & 8. C=8D{22_1+62_1+102_1+. . .}

1 1
C = 4D—-8D{Z§:i'+§§‘:‘l'+. . }

gaRTEgIRat TgfuwT fAwaiey: |
grn: gseraria faek afafasfearat wiva: o
FHAAE g WSARS  Folagmaa |

Sloka :

[T, chap. IL.]

* This stanza again is found in 7, chap. II, with two minor alterations: E(‘H'H'Iﬁlﬁ' being

replaced by FTfufagd and f‘argrvr by e 1
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Translation.—One less than the squares of the successive integers starting with 2
or 4 and increasing steadily by 4, are the successive divisors. Eight times the diameter
is divided separately by these and the results are added together to give the circumference
in the first case. In the second case the similar sum is subtracted from four times the
diameter to give the circumference.

1 1 , 1
E I YT BT Y i i o }

THEOREM 9. ('= 3D+GD§
Slokd :
Tige a7 feufae-
TFad e |
2T ¥ g farces
aqry fufred ofefuemer @m0
[K (T.S.8.), 17, chap. VL]

Translation.—Divide six times the diameter separately by the squares of, twice the
squares of the even integers (2, 4, 6, . . . . .. ) minus 1, diminished by the squares of
the even integers themselves. The sum of the resulting quotients increased by thrice
the diameter is the circumference. '

. 1,1 1 (n+1)2
TreEOREM 10. C ?40{1—— :§+3 —_ 'inq:(—__n+l)2+l} s
where n is odd and large.

Sloka :

sty arfefufagy g saraaingd

frarafzfawmgeanmae @ 9% FA FAT N0

ey g Fa faar glaeg snfwaar

TET FEATATATEATHEATT LS OIS &1 0

AT ®OGAT A sqrATHEAT: TTE |

ACITITS &9 Fd 99 QST SO 1)

qem: qffi: a1 e agFeat gerasiagena |

[T, chap. I1.]
T'ranslation.—Multiply the diameter by 4. Subtract from it and add to it alternately

the quotients obtained by dividing four times the diameter by the odd integers 3, 5, 7, . . .
Let the process stop at a certain stage giving rise to a ““finite sum”. Multiply four times
the diameter by half the even integer subsequent to the last odd integer used as a divisor
and then divide by the square of the even integer increased by unity. The result is the
correction to be added to or subtracted from our finite sum, the choice of addition or
subtraction depending on the sign of the last term in the sum. The final result is the

circumference determined more exactly than by taking a large number of terms, i.e. terms
going beyond the stage at which we stopped.

n+1\2
- ] <2>+1

Turorem 11, (=4 l—r+3—- . .:E‘:F]'(n+l)2+4+1](n+l)
. 2

n beiny odd und large.
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Slokd :
senTegemaQs fafoery Fefy s )

A FHGEATESIATIRT KT TT - 1)
T STHAEaHEea IRl Wagr: |
FrraffarreerTgomed a7 a1 FEH 1

(T, chap. I1.]

Translation.—Next is given another correction more precise than the foregoing.
The square of half the even integer next greater than the last odd-integer divisor, increased
by unity, is a multiplier. This multiplier multiplied by 4, then increased by unity and then
multiplied by the even integer already defined, gives a divisor. Multiply and divide
four times the diameter by our multiplier and divisor respectively. The result is an
improvement on our previous correction.

A IS 1 .....l_._ 1 1
THEOREM 12. C = 2D+4D{2—2:_~1- it EEo :{:2[(n+])2+2]}
n being even and large.

Sloka :

gatfags fagaa @1 g ffaear fasea

EEL L LSS R SIS EARIEGIES ARSI AL A
(7', chap. I1.]

Translation.—Divide four times the diameter separately by the squares of the even
integers (2, 4, 6, . . .) diminished by unity. The quotients alternately add to and subtract
from twice the diameter, the process terminating at a certain stage and defining a “finite
sum . Take the odd integer subsequent to the last even intcger squared, square it,
add 2 to the square, double the sum, and with the result thus obtained, divide four times
the diameter. This quotient added to or subtracted from the finite sum defined, leads to
a corrected value of the circumference.

1I

The passage from the work Aryabhatiya of Aryabhatdcirya with the Bhasya of Nila-
kanthasomsutvin, referred to in footnote 18 of the article is part of the following.

TA: gAATEE]  HERESATAHARIAAT | Se | JET AEAgAREET | g | A
AT WA . fem: @, e Agae ofde gF qege @ oew v ow
e afcfafierads fioam aesfr aeae o3, @de wma figaen:
e 7 faamee @) AT ErEenEgaEna e | AEreE g s
a swfafa wra: 0 (4 I(TS.8.), 41f]

Translation.—Why then is it that discarding the cxact value, only the approximate
one has been mentioned here? This is the answer: because it (the exact value) cannot
be mentioned. If the diameter, measured with respect to (by comparison with) a parti-
cular unit of measurement, is commensurable, with respect to that same unit of measure-
ment, the circumference is incommensurable (the circumference cannot be exactly measured
by the same unit); and if with respect to any unit the circumference is commensurable,
then, with respect to that same unit, the diameter is incommensurable. Thus there will

6
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never be commensurability for both with respect to the same unit of measurement. Even
by going a long way, only the “degree of commensurability” can be made very small,
absolute commensurability can never be attained.

111

Prince Rama Varma (12th prince of Cochin) has brought to light a fact which goes
some way towards substantiating the conjecture that the proofs in Yukti-Bhdga are
almost as old as Tantrasatigraha. He has in his possession a Sanskrit manuscript
commentary on Bhaskara’s Lilavati, by an unknown Keraliya. This commentary, which
bears the title Kriyakramakari, contains the proofs of many of our theorems in forms
which lead one to suppose that they are the originals of the proofs in Yukti-Bhasa.
There is a verse in the commentary :

ARAY STRTAGIRED
stowenfy aafad s |
arei Frarwsdd Tl der-
Tan Fafsasgasfaar fgam n
the first two padas of which are identical with those of the third benedictory stanza in
the commentary attached to T'antrasargraha. This identity corroborates the statement
in the verse that the author of Kriydkramakari is a student of Nilakantha and its Kali
day of compilation (suggested by the underlined chronogram in the verse) is the
1681915th. Thus Kriydkramakari would seem to be a work belonging to the same
period as Tantrasanigraha (4602 Kali era) ; and it is not unlikely that & close study of it

will lead to valuable conclusions regarding the origin of the mathematical arguments in
Yukti-Bhdsa.

6B
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CORRESPONDENCE.

LUDOLPH (OR LUDOLFF OR LUCIUS) VAN CEULEN.
To the Editor of the Mathematical Gazeltte.

DEeAR Sir,—In the archives of St. Pieter’s Kerk in Leiden, Holland,
this epitaph is recorded :

HIC IACET SEPULTUS MR. LUDOLFF VAN CEULEN, PROFESSOR
BELGICUS, DUM VIVERET MATHEMATICARUM SCIENTIARUM
IN ATHENAEO HUTUS URBIS, NATUS HILDESHIMIA ANNO 1540,
DIE XXVII IANUARH, ET DENATUS XXXI DECEMBRIS, 1610,
QUT IN VITA SUA MULTO LABORE CIRCUMFERENTIAE CIRCULI
PROXIMAM RATIONEM AD DIAMETRUM INVENIT SEQUENTEM.
QUANDO DIAMETER EST 1, TUM CIRCULI CIRCUMFERENTIA
PLUS EST QUAM
314159265358979323846264338327950288
100000000000000000000000000000000000
ET MINUS QUAM
314159265358979323846264 338327950289
100000000000000000000000000000000000 ;
SED QUANDO DIAMETER EST

100000000000000000000000000000000000,

TUM EST CIRCULI CIRCUMFERENTIA PLUS QUAM
314159265358979323846264338327950288

& MINUS QUAM
314159265358979323846264338327950289.

On my first visit to Holland in 1935 I tried to locate van Ceulen’s
tombstone, in the hope of presenting the Mathematical Association
with a rubbing of this interesting inscription ; but the grave had
changed hands several times, and the coveted epitaph, if still in
existence at all, was facing downwards on the underside of some
stone recording on its upper surface the usual entirely fictional
virtues of some lesser Dutchman, who employed his leisure in some
more conventional way than the calculation of = by a method not
far in advance of that which Archimedes had employed eighteen
centuries before.

In preparation for a renewed attempt to recover the original
epitaph, I have lately appealed to Dr. C. de Jong, President of the
‘“ Liwenagel ”’ (Leeraren in Wiskunde en Natuurwetenschappen aan
Gymnasia en Lycea), roughly the equivalent of our Mathematical
Association. His answer, I think, will be of some interest to our

members.
‘“ LEIDEN, 21st March, 1938.

Dear Mr. HoPE-JONES,
It was a great pleasure to me to be able to help you in your

attempts to discover the epitaph of Ludolph van Ceulen in St.

T
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Pieter's Church at Leiden. With the help of Miss Le Poole I have
succeeded in finding out some points, which will surely interest you.
We have discovered that Ludolph’s grave was exchanged for another
grave by his widow, Dec. 31st, 1610. In the year 1626, Aug, 10th,
the grave was sold by the Church-masters to Jonkheer Christoffel van
Sac, and afterwards to Mr. Adriaen van Hogeveen (1718). Accord.
ing to the archives, Ludolph’s first grave was nr 6 in the ‘ High
Choir’. Now, after a long search, I have found a piece of a tomb.
stone there, carrying the number 6, but nothing else. Part of this
stone has-been cut off so as to fit to one of the great pillars of the
Church, in this way :

5\ STONE

PILLAR

For this reason I doubt if it will be worth while to turn the stone
upside-down ; for, in the most favourable case, you will find only
part of van Ceulen’s epitaph, and certainly not the whole of it.

I shall be very glad to help you further if you want so. In this
case I would like you to give me further directions. ‘I regret that I
shall not be in town during the coming School Holidays.

Yours sincerely,
C. pE Joxa.”

It is presumably through some error in the archives that van
Ceulen’s widow is recorded as having exchanged his grave on the
same day on which, according to his epitaph, he was *‘ denatus ",
or * disborn "',

I hope that I may speak for all members of the Mathematical
Association, not only in passing a vote of censure on the Vandals
who destroyed such a treasure, but even more in thanking Dr. de
Jong most heartily for his co-operation in solving the mystery of
its disappearance.

Yours truly,
W. Hore-Joxes.

23rd March, 1938.
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Car v XVIIL
Polygenorrin circulo ordinate inferiptorn ad circulum ratio.,

Wadravic pa -abolen Archimedes inferiprione continua triangulorum

exiftentium & Asyw prrw, Queniam cnim triangulo maximo parabo-
lxinferipto, fuperinfenphic wiangula m continua rationc ad maximum il-
lud conftancer fubquadruplain infinitcum: ldeo conclufit parabolen cflc
maximiillius triznguli fefquitertiam.  Atita circulum quadrarc ncfcivit
Antphon, quoniam circulo infcripta continuc triangula exiftuncés 2oy w
2ppirw, & vago. An igitur circulus non porerit quadrari 2 Si cnim figura
compoiim cx wriangulis in rarionc {ilbqundrupln ad datum maximum tri-
angulum conftitutis minfinicum, ficad idem {cfquitertia, infinitorum ali-
qua {cicntia cft. Et ngm quoquc p]nm poterit componi cx triangulis
circulo in infinitum continue inferiptis & Acyw, licet 2ppizw, & vago. L
compofita illa ad maximum triangulum infcriprum aliquam habcebit ra-
tioncm. Valebunt autem Euclidai adferentes angulum majorem acuto
& minorem obrufo non cflc rectum. Circa hice, ut liccat liberius Philofo-
phazi de incerrailla & inconftanti polygoni cujufvis ordinate inferipei ad
polygonum infinitorum latcrum, feu, fiplacet, circulum, ita propono.

ProrostiTtio L

Si cidem circulo inferibancur duo ordinata polygona, numcrus autem
latcrum vel angulorum primi, fic fubduplus ad numerum Jaterum vel an-
gulorum fecundi: cric polygonum primum ad fecundum, ficut aporome
lateris primiad diamctrum.

Apotomen latetis voco fubtenfam
peripheriz, quamrelinquit & femicircu-
lo ca cui latus fubtenditur,

In circulo igitur cujus A centrum,
diamcter BC, infcribatur polygonum
quodcunque ordinatum,, cujuslatus fic
BD. Sc&avero circumfcrentia BD bi-
fariam in E, {ubtendatur B E. lraque
infcribatur aliud polygonum ordina-
tum cujus laws fie BE. Numcrus igi-
tur Jatcium vel :\ngulorum polygoni
primi, crit fubduplus ad numerum late-
rum vel angulorum fecundi. Conne-
Gawr antem DC. Dico polygonum
primum cujus Jatus BD ad polyg?nnm

{ecun-
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fecundum cujus latus BE vel LD effe,utDCad BC. Tungantur cnm DA, ED. Conltac
igitur polygonum primum tot triangnhis BA D, quot cxiltant larera vel nngnli po]yi;uni
primi. Polygonum autem (cc.undum conttattotidem trapeziis BED A, Polygonum 1gi-
tar primum ad polygonum fecundum fe haber , uc triangulum BA D ad trapezim
BEDA. Quod quidem trapcziam BED A dividiturin duo triangula BAD, BEL, quo-
rum bafis communis ¢ft BD. Triangula autem quorum cademelt bafis func ur aliitudi-
nes. Agaturitaque femidiameter AE, fecans BD in F. Quoniam igitur circumfeeentia
BD fectaclt bifaviam in £, ata AL fccat BD) ad rectosangulos. [taque A Feftalticu-
dotrianguli BD A, & FE aliitudo triangeh BED. Quare triangulum B A D ad wiangn-
lum BED eft, uc AF ad EF, & componceado uiangulum BAD tiangnla BA D, BLED
fimal junta,id eft trapeziom BED A, licat AFad AL, Qua adeo inratione ericetiam
polygonum primum ad polygonum fecundum. Sed AFad AL feu AB el ue DCad BC.
Eftcnimangulus BDC rctrus ficut BFA. &ideo funt parallela A F, 1D C. Ettigiwr po-
lygonum primum, cujuslatus B, ad polygonum lecundum, cujus latus BE vel LD, ficut

D C ad BC. Quodcratoftcudendum.
Prorositro II.

Si cident circulo inferibantur polygona ordinatain infinicum , & nu.-
merus lacerum primi fic ad numerum lacerum fecundi fubduglus, ad nu-
merum vero lacerum tertii fubquadruplus 5 quarri fuboGuplus , quinti
fubfexdecuplus, & cadeinceps continuaratienc fubdupla,

Eric polygonum primum ad tertiam, ficut planum fub apotomis late-
rum polygoniprimi & fecundiad quadracum a diametro.

Ad quarcum vere, ficuc folidumfub apotomis laterum primi fecundi &
tertii polygoni ad cubuin a diametro.

Ad quintum, ficut plano-planum fub apotomis laterum primifecundi
tertii & quarti ad quadrato-quadracum a dumetro

Ad fexeum, ficue plano-folidum fub aporomis latcrum primi fecundi
tertii quarti & quinti polygoni ad quadrato-cubum a diametro.

Ad fcptimum, ficut folido-folidum fub aporomis latcrum primifccundi
tertii quarti quind & fexti polygoni ad cubo-cubum a diametro. Ecco
in infinitum continuo progrellu.

Sit enim apotome laterispolygoniprimi B, fecundi C, tertii D, quarti F, quinti G,
fexii H. Ecfitdiametcrcirculi Z. Exantccedente igitur propofitione polvgonum pri-
mum ad polygonum fecundum crit, ut Bad Z. Traque quod ficex Bin polygonum fe-
cundum,eritzquale ei quod fitex Z in polygonum primum; polygonum vero fecundum
adtertiumeric, utC ad Z. Et per con[&qlxcx1s, quod fic fub ;wul}'gono fecundo & B, id
clt quod fitfub primo & Zad id quod fit fub polygono tertio & B, icur Cad Z. Quare
quod fit fub polygono primo & Z quadrato, aquale cftei quad fic fub polygonorertio
& plano B in C. Eftigitur polygonum primumad polygonum tectium, ficut planum B
in Cad Z quadratum. Etquod fic fub tertio & plano I in C, xqualce eritei quod fic fub
primo & Z quadraro. Rurfus ex cadem antecedente propolirfonc eft,ur polygonum ter-
tium ad polygonum quartum, ficae Dad 7. Ecperconfequens.  Quod fie fub tertio &
plado Bin C, ideft quod fitfub primo & Z quadrato ad id quod fit fub quatto & plano
Bin C, eftficut Dad Z. Quarcquod fitfub primo & Z cubo, aqualc crit ci quod fit fub
quarto & folido Bin Cin D. Eftigitur polygonum primum ad quarcum, ficut Bin Cin
Dad Z cubum. Eademque demonftrationis methodo etitad quintum, ficue Bin Cin
D inFad Z quadrato-quadratum. Ad fextum, ficutBin CinDin Fin G ad Z quadra-
to-cubum. Adfeptimum, ficut Bin CinD inFin Gin Had Z cubo-cubum. Et co con-
ftanti in infinitum progre(lu.

Ccce CorolL-
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Itaque quadratum circulo inferipeum eritad circulum, ficuc latus illius
quadrati ad poteftatem diametri aleilimam adplicatam ad id quod fi
continuc {ub apotomis latcrum octogons, hexdecagoni, polygoni triginta
duorum laterum , fexaginta quatuor, centum viginti oéto, ducentorum
quinquaginta fex , & rclxquorum omnium in ca rationc nngulomm latc-
rumve {ubdupla,

Sitenim quadratum circulo inferiptum polygonum primum, o&ogonum crit {ccun-
dum, hexdecagonum tertium, polygonum trigina duotum Literum quartum, & co con-
tinuo ordine, laque erit, ut quadratom cncalo inferiptum ad polygonum extremum
feu infinitorum laterum, ficur quod fir fub aputomis laterum tetragoni, octogoni, hex-
decagoni, & reliquorum ommum in ca ratione fubdupla in infinitum, ad poteftatem
diametri akiflimam. Er peradplicationem communem, ficut apotomes lateris quadra-
ti ad poteftarem diameari altifhmam adplicatam ad id quod fit fub apotomis latcrum
o&ogoni, hexdecagoni, & reliquorum omnium in ca ratione fubdupla in infinicum,
Eit antem apotome lateris quadrati citculo inferipti ipfi lateri xqualis, & polygonum
infinitorum laterum circulusipfe.

Sit cireuli diamcter 2. Latus quadrati ci cirenlo inforipti fit #/ 2, quadratumipfuin 2. Apotome la-

teris ologori /3o ¢ 5 Apotame lateris hexdecagoni 4/ 2 -4~ 4/ 7 v

Apotome lateris poly-

gonitriging. driornm Laterum = Apotome lazeris polygoni fexaginta qua-

2402

ity

twor laterum &/ 3 57 4y — o, ————_—-  Etcocontinno progreffu.
ST e

Sit antem diameser 1. Cirenlus 1 N Erit £ adt N, fieut o/ L ad unitatem adplicatam «d id

quod fit ex 4/: _.;_‘/:'-,; 5 il 4/;:4/_.—-—’—?-, R Vi WTIE T

3 -
3 — e f/ 1
2 o

n i —
T

Sit diamacter X, Circulus Aplanum. Eiit X quadratum L ad A planum, ficm L. X
quadrati £ ad X poteiticum maximam adplicatam ciquod fit ex radice binomia X qua-
drati },-- radice X quadrato-quadrati J,in radicem binomiam X quadrati &, plus radice
binomix X quadrato- quadrati 1, 4-radice X quadrato- quadrato- quadrato- quadran 1,
inradicem binomia X quadrati §, plus radice bicomixz X quadrato-quadrati-’__—, 4~ radi-
cec binomixz X qmdrato-quadrato-quadrato-quadrmi +» -+ radice X quadrato-qua—
draro-quadrato-quadrato-quadrato-quadrato- quadrato- quadrati &, inradicem &c. in
infinitum cblervata unifuormimethodo. )

Carvr XIX
Tgaxdsoy, fo1s ad ufum FMathematici Canonis methodica.

AT vos, & nobiles fiderum obfervatores , mifla fadta matxotechnia ad
veram Cyclometriamrevocs,hoceft, ad legitimum Matchematici Ca-
nonis ufum. Ur cnim vulgo peccatur in ¢jus fabrica,{ic ctiam inufu. Iraque
dum renevatur meus ad Canonem infpe@ionum liber, Analytice mea
methodi, qua fclco expedire me a triangulis planis ac {pharicis, ultro co-
piam facio ad excitandum veftra ftudia per aliquod laborum,quos fuftinc-
tis in abacis Aftronomicis, fublevamen. Neque vero obruent vos n}ul-
ticudiine praccepra. Tum enim negocium vigine & uno dedopevais ferc

abfolvo.
Ae&'-
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Acdopfuor 1,

TRIANGVLI PLANI RECTANGVLI]

Datis angulis, dantur latera in partibus Canonis.
Enimvero,
Ex canonica ferie prima:
Perpendiculum fict fimile finui anguli acuti. Bafis, finui reliqui & relfo. Hypose-
nufa, finui toto.
Vel,
Ex ferie fecunda :
Perpendiculum fiet fimile profinui anguli acuti.  Bafis, finui toto, Hypotenufa,
tran(finuofe anguli acuti.
Vel denique,
Ex ferie tertia:
Perpendiculum fiet fimile finni toto. Bafis,profinui anguli reliqui. Hypotenu-
[fa, tran(finnofe ejufdem.
Vel ctiam,
Mixtim ex Canonss [erie trina:
Perpendiculum fict fimile differentie inter tran(Jinuofam anguli acuti & finum
religus & recto. Bafis, finui acuti. Hypotennfa, profinui ejufdem.
Vel,
Perpendicnlurs fiet fimile differentic inter finum anguli acuti & tran(finnofam
reliqui & recto. Bafis, finni reliqui ¢ recto. Hypotenufa, profinui ejufdem.
Veldenique,
Perpendiculum fiet fimile tran(finuofa anguli acuti. Bafis, tran(finnofe reliqui &
recto. Hypotenufs, adgregasd profinss acuti G profinus reliqui ¢ recto.

Assa'yg»«oy 1L

Trlanguh plam rc&anguh.

Data hypotenufa ac perpendiculo vel bafe, dantur anguli,
Enimvero crit,
Vs hypotennfa ad finum vorum, ita perpendiculum ad finum anguli acuti. Etita
bafis ad finum reliqui & reto.
Aliter crit,
V't bafis ad finum totam, izabypotennfa ad tran(finunofam anguli acuti.
Vel,
vt perpendiculuns ad finum votam, ita hypotennfs ad tran(Jinuofamn anguli re-
ligui ¢ recto.

IIL
Trianguli plani rc&anguli.

Datis perpendiculo & bafc, dantur anguli.
Enimveroeric,

V't bafis ad perpendiculum , ita finnus votus ad profinum angnli acuts.
VCI ’ ‘

Vit perpendiculum ad bafin , itafinus totus ad profinum mguli reliqui e recto.
TrR1AN-
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Mv NiMEN

ADVERSVS NOVA CYCLOMETRICA,

Seu,

ANTIIOEAEKTZI

\ Us t R v~ T illi operam infeliciter, qui fuis, quas Sccu-
) riclas vocant, figuris conati {unt circulum triginta fex
2 lngxlcx1tis hcxagoni ad;rqu;u‘c. (ll_!id cnim cerel ex ma-
gnitudinibus plane incertis poterant refolvendo confc-
4 qui? Aqualiazqualibus addantvel fubtrahant,per zqua-
( liadividantaut multiplicent, invertant, permutent, ac
denique per quofcunque proportionum gradus depri-
mant, vel attollant, hilum fua Zetefi non proficient. fed in vicium, quod
Logiciappellant wmpa 78 ainjuar@, Diophantai aimmly, incident, aut
demum falfo fcipfos deludent calculo, ut prafenfiflent, i qua lux cisad-
fulfiflet vera analyticx dotrine.  Suntautem imbelles, qui povosspss iftas
bipennes reformidant, & jam ab iis fauciatum deflent Archimedem. Sed
vivic Archimedes. Neque cnim cum offendunt (ebdopeapripale =& =
drnfes, Yalbdoyodogiay , Anapodixes, verba magnifica. Quo ramen un-
dique fint tutiorcs,
Nubigeros clypeos, intactaqne cadibus arma,

fed dvarerexsg. quibus primum fefe muniant, profero, fubminiftracurus -
Agpina, i foree hoftium ferocior audacia cft.

Prorositio L

M1t vs dodecagoni circulo infcripti, minorem laabet rationem
ad diamctrum, tripla fequioctava,

Centro Aintervallo quocunque A B deferibatur circulus BC D, in quo fumatur BC
circumferentia hexagoni, qua fecetur bifariamin 1), & (ubrendatur D B, Eitigitur DB
latus dodecagoni, quo duodecuplatoin E, erit 1 E zqualis ambitui dodccagoni circu-
lo BD Cinfcripti. Agatur autem diameter D F, Dico D E ad D F, rationem habere mi-
norem tripla felquioctava.

Jungantur enim BC, BA, ipfamque B C diameter DF fecetin G. Ergo bifariam
& ad angulos rectos fecabit. Triangulo autems DBG conftruatur fimile tiangu-
lum DEH.

Quoniam recta B Cfubtenditur circumferentiz hexagoni,idcoBA feuD A ipGiBC
eft xqualis. Quare conftituta A Cfeu BC partium octo, it BG carundem quatuor.
Quadratum vero abs A G et 48, &idco AG fit major 6%. Ipfaautem D G minor
1 1"3 Et cum conftituta fit DE duodecupla iplius D B, eritquoque E H duodecuopla

Hhh 2 ipﬁus
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ipusBG, & DH duodecupla iplius D G. Quare erit EH carundem partium 48. DH
verominor 13. Immo winor 12 43, Quadratum autem d laterc 48, cft 23043 abs 13 ve-

10,169. Quz duo quadrara conficiunt247; , nonetiam 2500, quadratum 4 latere 5o,
Quare recta D E, cujus quadratum xquale et quadratisE H, D H, minoreftso. At ve-
roratio o ad 16 ; efteripla fefquio€tava accarate. Ratio igitur D Ead D F, minor eft tri-
plafefquioctava. Quod cratoftendendum,

Ommino Arithmetics tam fiientia oft quam Geometria, Magnitudines rationales rationalibus nu-
nieris, irrationales irrationalibus commode defignantur. Qui per numeros magnitudunes metitur, fi
fuo calenlo alias is deprehendic, quans reipfa fine, non arti (¢d arsficis culpa eft.

Immo vero, ait Proclus, oft >pidunling anpiCestox sewuerpius, Accurate fupputanti conflitura
diametro partis unius , ambitus dodecagons infiripts fit Latus binomie 70— ¢/ 5888, Qui contra
pronunciaserit, ervatvel in menfuris Geometra , vel in numeris Epilogiﬂa.

Ambitws autem civculi ad diametrum majorem cffe tripla fefquioitava. ficuti minorem tripla fefqui-
[eptinna non dubitavit badtenus Mathematscorum [chola. 1 enim vere demonflravie Archimedes. Non
sgitur ¢ falfs Epilogifino inducendum fuit dwmpue s¢barucdaris. Lineam rectam cffe cirtulari
itfdem cerminis contenta niajorem , contrarium fumente Archimede cx s xoiviis évvoias , ¢ ipfum
etiam demonflrante Entocio , ac gencraliter definicnte mciv ¥ wile miexl Exyody seuppay
frayslw avey Tlw 609eian.

Prorositio Il

_ . Semidiametri circuli 3

e o quadrataria divife par:

. a ceatro ad quadrarta-

1 riam, major cft media

Gl . \ proportionnli inter femi-

- / \ diamctrum & duas quin-
tas femidiametri.

r / ' \ Sitquadrans circuli ABC,
| : \ quadrataria B Dj fumatur A E
| | ' xqualis duabus quintis feri-
| c diametri A B vel A C; media
E [ A D | vero proportionalisinter A E,
\ AC,htAF. Dico AD majo-

| / rem efle quam A F.
\ / Exiis enim, qux de quadra-
N\ 2 taria 4 Pappo demonttraa
N\ / funt, f{emidiameter A B fev
o AC,me-
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A C,media cft proportionalis inter circumferentiam BC & A D. Sic A B partium 7.
Circamfercatia B C, qua quadrans cft perimetri, eritminor 11. Nam diametro exiften-
tc 14, perimeter minor eft 44. Sit autem A B 35, Circumferentia B Cminor crir g5,
Quodvero ficfub A D, B C, xquale cfl quadrato ex AB. Quarccric A D major 223,
Qualiumauten AB,ide A C, valerss, taliumef AE14; AF verominor 22 3. Etic
igitur A D major quam AF. Quod cratoftendendam.

taque fi ex diametro A B abfiindatur redla A G ipfi A T aqualis , & compleatur parallclogram-
mum GH D A, ipfum erit émpiunxec , non quadratum. Etcum complebitur quadratum B C,adla
dragonia B K non tranfibit per V1, fed per aliqued [ punctum remotins 4 1D punélo.  Quod ad vitan-
dum Pfendographems preflabat adnotaffe.

Provosrrro IIL

Quadratum ab ambitu circuli, minus cft decuplo quadrati A dia-
metro.

Sitenim diameter 7. Diamertri quadratum erit 49. Ipfius vero decuplum 490. At
ambitus circuliminor erit 22, & proinde quadratum ab aimbito minus 42 4.

Euit antem bec Arabum in quadrande circulo jamdu explofa fententia , Quadratum aban:bi-
tu circuli effe decaplum quadsaci i diamerro. Negue vero ferendus efl, qui adverfis demon.jivan-
ten drohuicdens avn paised's Anapodicta propofucrir.

Prorosrrtro 1IV.

Circulusad hexagonum ci infcriptum rationem habet majorem,quam
fex ad quinque.

Circulo, cujus A centrum, inferibatur hexagonum B CD E F G.iDico circulum cujus
A centrum ad hexagonum BCDEFG rationem habeére majorem , quam fex ad quinque.

Tuné&iscenim A B, A C,BC, cadatin B C perpendicularis A Z.

Quoniam igitur in rrian-
guloABCcruraAB,ACz-
qualiafune, bafis fc@acft bi-
fariam in Z & funt wquales
BZ Z C. Trangulumautem
xquilatcrum cR A BC. Cruia
enim ambo funt femidiame-
tri. Sed & balis, cum fic la-
tas hexagoni . femidiametro
clt xqualis. Conflitaea igitue
femidiameiro BA fcuAC 50,
fuBZfeuZ Cig, A Zverofic
minor 16.cujus quadratumelt
676. Ditferentia vero quadra-
torum A, BZ cft dancaxat
675 Quodiicporrofub BZ,
AZ rectangulum , viangulo
B A C et xquale. Ducawur
itaque 15 in2e, hunt 390,
Qu.lum agitur quadratum
ADcritgoo, talium uizngu-
lam A B C eritminus 390, vel
(omnibus divins per 50 ) oxi-
fiente qnadiato AB 50 . niangulum A B C crit minusi;, Tunganter AD,AE. AFAG.
Conftatigitur hexagonum BC D E F G uiangulis fex aqualibus ipi B A C. Quare qua-
lium quadratnm A Beiic o, talium hiexagonum cric minus 78. Vel qualium quadratum
A B eripunguestalivm hexsgonam ctit minus partibus tredecim.

Hhh; At
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At vero, cfturperimerer cireuli ad diamerrum, ita quod fir fub petimetro circuli &
quadrante diametri ad id quod fitfub diamerro & quadrante diamerri. Sed id quod fic
{ub perimetro circuli & quadiante diametti, eft xquale circulo. Quod autem fit fub dia-
metro & quadrante diameti, ipfum elt quadratum d femidiametro. Ergo eftut perime-
terad diametrnn, ita circolus ad quadratum ¢ femidiametro. Qualium autem diameter
eft 1, ralium perimeter majoreft3 25, & tanto manifeftius major 3 52 feus . Qualium
igitar quadratum femidiametri A Betit quingue, ut ante, talium circalus enit major 15 L
Hexagonum autem in iifdem partibus fuic minus 15. Quare circulus ad hexagonum ci
inferiptum majorem habebit rationem quam g Ladugidelt,quam 25ad 104, fecu 6 ad

5> & tanto evidentius majorem, quam fex ad quingue. Quod craroftendendum.

Non igitur xala w wpafua circulum quadrant , qui cum hexagono & quinta parti hexagoni fla-
tunne aqualemsy cum fie magor fecundum luntes ab Archimede G F i8iay vy v praflitntos, Schola
autem noflre Platonice funt, éprofeffores candids. Quare ne principiss Geomerricis obluctamini. Lt ve-
ro ntcirculum truncarunt meaenvay , fic i damns accepr sompenfationem cande fire hirandinums

d(”tia’ﬂ" yerfus plff[l)l/d]ll dft'll)’ffll!ﬂf.
Prorosrrio V.

Triginta fex hexagoni fegmenta majora funt circulo.

Quoniam enim circulusad hexagonum ci inferiptum majorem habet rationem, quam
fexad quinque, feu as ad dextantem, ideo differentiainter circulum & hexagonum erit
major fextante circuli. Sed differt cicculus abhexagono per fex fegmenta hexagoni. Sex
igitur fegmenta hexagoni fuperant fextantem circult, atque adeo triginta fex fegmenta
cruntalle circulove majora. Quod crat oftendendum.

Prorositrio VI

Omnc fegmentum circuli majus cft fextante (céoris fimilis , imiliter-
que deferiptiin co circulo, cujus femidiameter bafi fegmenti propofiti eft
xqualis.

In defcripto fub A centro. circulo BD C,fubtendatur quavis circumferentia BD;tan-
gat autem circulum reta BE, & centré Bintcrvallo B D defcribatur circulus alier DEF.

Circumferentia igitur ED fimilis crit {emiffi circumferentiz BD. Itaque fumatur D |
circamferentiaiphus DE dupla,& jungantur BF, AD. Similes igitur crunt{cctores BAD
FBD. Dico fegmentum circuli BD C contentum reéta BD & citcumferentia, cuie:

fubtenditur, cfle majus fextante fc&oris FB D,
Deferi
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Defcribatur enim linea (piralis, cujus principium B, tranfitus per D, exiftente BD tan-
ta parte principii converfionis BEZ,quama parscft angulus E B D quatuor rectorum.Se-
toris igiur E B D tertia pars eft fpavum contentum rea BD & fpirali. 1d enim polt
Archimedem Pappus demonttravit propolitione xx11. libri [V, Mathzmaticarum colle-
Ctivnum. Sc&oris vero FBD fpacium idem erit pars confequenter fextupla. duplusenim
conftrnctus eft fe&or F B D ad fe@orem EBD. Neque vero {piralis concurret cum cir-
culari. Id enim cffer abfurdum.Sed neque fpiralis in progre(Tu egredietur circulum priu(-
quam ad D punétum pervenerir. Sccetur enim angulus E BD utcunque 4 reéta BG H,
intercipiente fpiralem in G, circumferentiam in H. Re@a igitur BD ad re@am BG crit,
ut angulus EBD ad :mgulum EBG;id cft, ut circumferentia BD) ad circumferentiam B,
ex conditionibus helicén. At major eft ratio circumferentiax BD ad circumferentiam BEI,
quam fubtenfe BD ad fubtenfam BEL Majores cnim circumfercntix ad minores majo-
rem habent radonem, quam re@uead redtas, quaiildem circumterentiis fubtenduntur,
Quarcrecta Bilrectam BG exceder. Idemque in quibuthiberredtis, angulum EBD fe-
canubus, accider. Itaque tranhibit fpicalis fub circumierentia BD , & aliquod fpacium
inter fe & circomferentiam relinquer. Quo quidem fpacio fegmentum circuli con-
tentum re¢ta B D & circamterenua, excedic fpacium, quod ab cadem re&ta & fpirali
comprchenditur, & fextanti feGoris FB D oflenfumelt xquale. Segmentum igitur il-
lud ciit majus fextante fe&toris FBD. Quod crat demonftrandum.

COROLLARTIY M.

Atquc hinc quoque manifettumeft, triginta fex fegmenta hexagonicf-
fe circulo majora.

Quando enim cveniet B D cffe fegmentum hexagoni, fe&tores FBD, B A D crunt z-
quales, quoniam fuotum circuloram femndiamerrt BD, A D crune zquales. Sex igitur
fegmenta hexagoni crunt {c&orc BA D majora, atque adeo triginta fex (cgmcma ma-
jora fex fectonbus, id ¢ft, toto circulo.

Potuit non minus generale Theorema , per parabolas , ant potius ea , quibus parabols quadrantur,
Geometrica medua demonftrandum ita proponi, Omne fegmentum circuli majus cft fefquiter-
tio tranguli ifofcelis ipfi fegmento immota balc infcripti. Sccundum quod flatim adparebis
sajorein fferationem triginta fex fegmentornin hexagoni ad carcnlum quam 48 ad 47. lmmo ctians
accurarius fuppuranti fola trigmea quasuor fegmienta , & (pacium paulo majus beffe egmenti, fed mi-
nus dodranre, deprehendencur complere circulum. Licet autem hyperochen feguments fupra triensems un-
cie circuli iswoculis exhnbere.

Prorositro VIIL

In dato circulo a fegmento hexagoni trigefimam fextam partem ipfius
circuli abfcindcre.

Sitdatus circulus, cujus A centrum, diameter B C, (cgmcnmm hexagoni BD. Opor-
tet in dato circulo BDC i fegmento hexagoni B D contento re&a B D & circumferen-
tia cui fubtenditur, trigelfimam {extam partem ipfius circuli BD C abfcindere.

Tangat circulum re@a B E, & deferibatue linea fpiralis, cujus principium B, tranfirus
per D, exiftente BD ranta paree principii converfionic BEZ , quanta pars angulus EBD
clt quatnor reorum, & centro B intervallo B D deferibatur circulus D E. Sectoris igi-
tur EBD tevria pars cit fpatium contentum reta BD & (pirali. Eit autem BD xqualis {e-
midiametro BA cft enim BD latus hexagoni ex hypotheli, & angulus EBD eft tricns re-
€ti, cum it B D circumferentia amplitudo beflis reti. Seétor igitur EBD cft uncia cir-
culi, & fpatium conlequenter fpirale BD tricns unciz, id eft, trigefima fexta pars circuli.
Tranfibitautem fpirabis per fegmentum, non ctiam concurret cum circulari, vel circula-

rem
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remabfcindetin progre(fu abs B antequam ad pun@um D pervenerit, ut ¢t demonftea-

tum. In datoigitur circulo BD C abfciffaclt 4 fegmento hexagoni BD trigefima fexta
parsipfius circuli. Quod facere oportebat,

Artque boc fcuto tandem feptemplici mollis & hebetis fecuriclz acics
fatis obtufa cfto.

Quod fi qui ipfius redexewpazias hypotypofin defiderent, in his ne va-
cent, brevibus paginis cam confpiciunto.
ANALYSIS CIRCULI
fecundum MsAexyGes.
L
Cirenlus conflas fex fcalpris hexagoni.
I

_ Scalprum bexagoni conflat fegmento hexagoni & triangulo hexagoni , feu ma:
Jore.

IT1L
Triangulum hexagoni feu majus conflat Sfegmento ljr.\'.fgani & fecaricls.
1V.
Securiclg conffat duobus feqmentis hexagoni G complemnento fecaricle.
V.
Complementum fecuricle conflas fegmento hexaconi & refiduo ﬁgmemi.
VI

Rurfus complementum fecuricle conflat triangulo minore & refiduo trisngul
minoris. Eit autem sriangulum minys quinta pars trianguli hexagoni, fen wa
]ar .

Lem
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LEMMATA DYO VERA,

Primum.

Deccem minora triangula xqualia funt fex fegmentis hexagoni & duo-
bus complementis fecuricla.

Quorum cnim triangulum hexagoni conftat fegmento & fecuricla, fecuricla vero
duobus fegmentis & complemento :ideo duo triangula hexagoni conftant fex fegmen-
tis & duobus complementis.  Scd duo wiangula hexagoni fcu majora aquala funt
decem minoribus, Ergo decem minora wiangula aqualia crune fex fegmentis &duo-
bus complemeatis. Quiod crat oftendendam.

Secundum.

Quadraginta minora triangula xqualia funt circulo & duobus comple-
menus {ecuricla,

Quoniam enim circulus xquatur fex fcalpris hexagoni, {ex autem fealpra zqualia fint
fex tnangulis hexagoni & fex fegmentis , fex porro triangula hexagoni valeant triginta
triangula minora: ideo circulus zquatar triginta triangulis minoribus & fex fegmentis.
Utrobique addantur duo complementa fecuricle. Circulus igitur una cuin duobus com-
plemenus fecuricle zquabitur triginea triangulis minoribus & fex fegmentis & duobus
complementis. Sed flex fegmenca & duo complementa valent decem minora triangula
per antecedens Lemma @ Ergo quadraginta minora triangula aquantur fex fegmentis
hexagoni & duobus complementis fecuricle. Quod crat oftendendum,

YETAATDPION.
Dico triangulum minus xquari {uo refiduo.

Qs Ameddiis.

Quioniam enim circulus cum duobus complementis fecuricle ( qua quidem valent
duo triangula minora, & duo reflidua minoris trianguli ) xquantur triginta {ex minori-
bus triangulis & infaper quatwor. Ueringue auferantur duo triangula minora. Illic
cum auferentur de duobus complementis, relinquent duo refidua tianguli. Hiccum
auferentar ¢ quatuor triangulis , relinquent duotriangula. Ergo duo relidua zquantur
duobus triangulis.

Elenchus dovicsesix4.

Ab xqualibus totis non ab zqualium partc aufterenda aqualia funt, ut qux relin-
quuntar mancant zqualia. Auferre ex zqualium parte eft adfumerc reliquum ¢ toto
reliquo efle zquale, ut bic circulum zquan triginta fex minoribus triangulis. 1llud vero
pernegatur, & cft fallifimum. Sibi demonftranda concederc, cft velle videri demon-
ftrative crrarc.

Ap VETAAPION ALIVD, LEMMATA DVO VERA,

Primum.

Viginti quatuor quarcx trianguli hcxagoni & fex fcgmcnm funt xqua-
lia viginti quatuor fegmentis & fex complementis fecuricla.

Quoniam cnim triangulum hexagoni conftat tribus fegmentis & complemento fe-
curicla, circulus autem componatur ex (ex triangulis & fex (egmentis ; ideo viginti qua-
tuor (egimenta cum lex complementis circulum adequant. Et quia quataor quarte in-
tegrum componunt, xquab.it quoque circulum viginti quatuor quartax trianguli he-
xagoni una cum fex fegmentds. Que autem uni xquantar xqualia funt inter fe. Quare
\:iginu’ quatnor quaree wianguli hexagoni & fex fegmenta aqualia funt viginti quatuor
fegmenns & fex complementis fecunicle. Quod crat oftendendum.

Iit Sccun-
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Sccundum.

Si fucrint tres magnitudines inxquales, quarum media furmpta vicefics
& quatcr, & addita minimax fexies fumpta, candem magnitudinem com-
ponat quam minima fumpta vicelics & quater, & addita maxima fexics
fumpea : differentia inter quadruplum mediz & triplum minima: eric
maximx aqualis.

Sit enim minima B, media D, maxima A, Ergo ex hypothefi B 6, plusD 24. xzqua-
bitur A 6 plus B 24, Utrinque auferatur B 24, Igitur D 24 minus B 18 xquabitur A6,
Ec omnibus per fex divifis, D 4 minus B3 xquabitur A, Quodipfum cft quod enun-
cratur.

ANAITOAEIKTON ©EQPIIMA.

Sunt tresinzquales figure planz & inter fe commenfurabiles ; mini-
ma, fegmentum hexagoni; media, quadrans trianguli hexagoni; maxima,
complementum fecuricla hexagoni.

Potuit inaqualitas,& inxqualitatis gradus demonftrari;at ymmerriam afymmetriam-
ve nemo demonflraveric, quin uiangulum hexagonialiud ve reculincum circulo pri-
mum comparaverirt. Ea vero compatatio adhuc nelcitur, e dhigyms 51, % & v yu-
vaasi KHTKq-

Y ETAOIIOPIZ=Z M A

Ttaque qualium quadrans trianguli hexagoni crit partium quinque, ta-

lium fegmentum efle quatuor necefle cft.
Qs };7!1;51'21;.

Sitenim (egmentum hexagoni B, quadrans trianguli hexagoni D,complementum fe-
curicle Z.Quoniam igitur tres funt inzquales magnitudines, atque harum B minima, D
media, Z maxima, & fe habent inter fc ut numerus ad numecrum. Efto D partium quin-
que, talium B erit trium aut quatuor, & nihil prterca. Sitautem, fed i fieri poflit, par-
tium trium ; ex primo igitur & fecundo Lemmate erit Z undecim. Itaque complemen-
tum conftabit duobus fegmentis & dodrantc fegmenti. Senfus autem repugnat, Qua-
re elt B quatuor.

Elenchus dovropsias.

Pofita D magnitudine partium quinque, poteft oftendi B major effe partibus tribus.
An vero idco Berit quatuor, conceflo ctiam co, quod vefcitur, habere fe B ad D, ut
pumerum ad numerum ¢ Omnino ca conclufio :\flvllogiﬂicn cft. Quid enim {i B ftatua-
tur quatior partum com aliqua rationali fratiuncula. An quatuorcum femille fenon
haberc ad quinque, vt numecrumad numeram, hoceft ,ut 9 ad 10, alius quam &Aeza-
sngs ¥ dywuetgyms negaverit? Sané pofita D partom 1y, fic B pavio major 9; Zve-
ro paulo minor 17, fecundum limites Archimedicos. Fx his autem duobus J.sbdagiss
din:l;:lllnrunt rcliqua TANERHTEY HETH T G‘IAerS;:!‘ ¥ nUxAx ’., Tk F -_-IP.;(:;V Jrnidaveias cDaA-
y.ac@.

Tépxs 78 AvhimeAexews.

SECUN-
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N circulo cujus A cen- C
trum fumatur circiife- B ~_ D

SECVND £ NEAEKYOMAXIAS
rentiahexagoni BCD, W / F \\

hypotypofis, ¢ T8 @egebnudis.
" & conne&antur A B, P \\

AD, BD. Ex AB autem ab- / \< / \

{cindatur re&a, cujus quadra- / E\ / \

tum ad quadratum AB (e ha- / ‘\ /

beat, ut unum ad quinque. Sit | N\

illa BE, & per E agatur ipli I.

A D parallela, fccansBDinF. | /
Iraque criangulum B E F \

triangulo B A D fiat xquian- \ o

gulum, & cjufdem fubquincu- 3 /

plum. - >

LEmMmMma L VErRv M.
Triginta feptem triangula B EF majora funt circulo BCD.

Inadnotatis enim ad Mathematicuma Canonem oftenfus cft civeulus ad quadeatum
femidiametri fc habere proxime, ut 31, 415,926,556 ad 10,000,000.000.Polito autem
latere A B, id eft, femidiametro, particularum 100,000, trianguli A B D xquilaceri alti-
tudo cft 86, 6oz 222,

100, oce

Itaque.
Triapgulum ABD fic 4,330, 127,019
Triangulum BEF. 866,025,404
Triginta feptemriangula BEF, 32,0412,959,948
Excedentia circulum 31,415,926,536
Pcr particulas 617,013,412

LemMma IL VER VM.
Circulus BCD non cft major triginta fex fegmentis BCDF.

Quinimo circulus B C D longe minor cft triginta fcx (egmentis BC D F.Scéor enim
B A D fexta pars cft totius circuli

Itaque

Qualium circulus cft 3T, 415,926,536
Taliumf{e&ot BAD eft $3235,987, 756
Aufcmurtri:\ngulum ABD carundem 4,330,127,019
Relinquitur fegmentum hexagoni fpaciumve mixtili-

ncumBCDF. 905,860,737
Ter duodena autem talia fegmenta funt 52,610,986, 552
Excedentia circulum per particulas 1,195,0§9,996

lii 2 +ETAO-
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Ergotriginta feprem triangula BEF funt majora triginta fex fegmena
ts BCDF.
Elenchus a'a'u)k.oyg’ao:.

In Grammaticis, dare navibus Auftros, & dare naves Auftris, funt zque fignificantia.

Scd in Geometricis , aliud et adfumpfifle circulum B CD non effe majorem triginta
fex fegmentis B C D F, aliud citculo B C D non cflc majora triginta fex fegmenta BCDF.
Hla adfumptiuncula vera eft, hxc falfa.

Cum igitur ita arguo

Triginea feptons trianguls majora funt circulo.

Sed trigints fex fegment non funt majora circulo.

Ergo trigita [eptem triangula majoras funt triginta fex fegmentia.
Syllogittice concludo, {cd falfo, quia fallum adfumo.

Pccco autem inleges Logicas cum in hanc formulam fyllogifmum in ftitvo.
Circulus nunor off triginta [eptem triangulis,

Circulus non ft major triginta fex fegmentss.

Ergo triginta [eptems triangkla funt majora triginta fex fegmentis.

Eft autem s 39animgy cparus, non davenlingv. Cum enim initio vere propoluiffent
Cyclomctra circulum non efle majorem triginta fex fegmentis hexagoni, legerunt ex
pottfacto non ¢fle minorem, atque inde fuum clicuerunt falfum Corollarium,

FRAN-
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13 WALLIS. COMPUTATION OF = BY SUCCESSIVE INTERPOLATIONS

After 1650, analytic methods began to receive more attention and to replace geometric
methods based on the writings of the ancients. This was due partly to the acceptance into
geometry of those algebraic methods that Descartes and Fermat had introduced, and partly
to the still very active interest in numerical work—interpolation, approximation, logarithms
—a heritage of the sixteenth and early seventeenth centuries. This tradition was strong in
England, where Napier and Briggs had labored.

This analytic method advanced rapidly through the efforts of John Wallis (1616-1703),
of Emmanuel College, Cambridge, who in 1649 became the Savilian professor of gcometry
at Oxford. He was one of the founders of the Royal Society and, through his work, in-
fluenced Newton, Gregory, and other mathematicians. In his Arithmetica infinitorum
(Oxford, 1655), he led explorations into the realms of the infinite with daring analytic
methods, using interpolation and extrapolation to obtain new results. The title of the book
shows the difference between Wallis’ method—he called it ““arithmetica”; we would say
(with Newton) “analysis”—and the geometric method of Cavalicri. First Wallis derived
Cavalieri’s integral in an original way. Thereupon, he plunged into a maelstrom of numerical
work and, with fine mathematical intuition to guide him in his interpolations, arrived at the
infinite product for = that bears his name. See J. F. Scott, T'he mathemutical work of John
Wallis (Taylor and Francis, Oxford, 1938); also A. Prag, ‘“John Wallis,” Quellen und
Studien zur Geschichte der Mathematik (B) 1 (1931), 381412,

Proposition 39.> Given a serics of quantities that arc the cubes of a scries of
numbers continuously increasing in arithmetic proportion (like the scries of
cubic numbers), which begin from a point or zero (say 0, 1, 8, 27, 64, ...); we
ask for the ratio of this scrics to the series of just as many numbers equal to the
highest number of the first series.

1 In previous propositions Wallis has dorived tho limit

3
1
lim4=L o1
fN— © ”“0‘1 k + 1

for k = 1, 2. This Proposition 39 prepares for the case k = 3; it shows Wallis's typical
inductive and analytic method.
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The investigation is carried out by the inductive method, as before. We have

°+1=1~§_1+L
1+1=2 4 4" &
o+1+8=9_§_1+1,
8§8+8+8=24 8 4 8
0+1+8+27=236 __g,__1+_1___
27T +27T+ 27T + 27 =108 12 4 ' 12’
O+ 148+ 27+ 64 =100 _;5__1+l-
64 + 64 + 64 + 64 + 64 =320 16 4 16’
0+1+---+125=225__(_3__1+_1_,
1256 + .- + 126 =750 20 4 ' 20’
0+---+125+210=4.41_1_1+_1_,
216 + --- + 216 = 1512 24 4 ' 24’

and so forth.

The ratio obtained is always greater than one-fourth, or }. But the excess
decreascs constantly as the number of terms increases; it is §, 1, 1%, 7%, 25> 20 - - -
There is no doubt that the denominator of the fraction increases with every
consccutive ratio by a multiple of 4, so that the excess of the resulting ratio over
} is the same as 1 :4 times the number of terms after 0, etc.

Proposition 40. Theorem. Given a scries of quantitics that are the cubes of a
series of numbers continuously increasing in arithmetic proportion beginning,
for instance, with 0, then the ratio of this series to the series of just as many
numbers cqual to the highest number of the first series will be greater than §.
The cxcess will be 1 divided by four times the number of terms after 0, or the
cube root of the first term after 0 divided by four times the cube root of the
highest term.

Thcsumoft;ho;»s(-:ricsO“+l."+----+-l”’isl+1 t+1

7 ®+ T 13, or, if m is the

number of terms, —74—"' B+ ;1_'; B = 7:-! ml® + éml“. This is apparent from the pre-

vious reasoning.

If, with increasing number of terms, this excess over } diminishes con-
tinuously, so that it becomes smaller than any given number (as it clearly does),
when it goes to infinity, then it must finally vanish. Therefore:

Proposition 41. Theorem. If an infinite series of quantities which are the cubes
of a schies of continuously increasing numbers in arithmetic progression, begin-
ning, say, with 0, is divided by the sum of numbers all equal to the highest and
cqual in number, thon we obtain . This follows from the preceding reasoning.

Proposition 42. Corollary. The complement AOT [Fig. 1] of half the area of
the cubic parabola thercfore is to the parallclogram T'D over the same arbitrary
basc and altitude as 1 to 4.

Indeed, let AOD be the area of half the parabola 4D (its diameter 4D, and
the corresponding ordinates DO, DO, cte.) and let AOT be its complement.
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A T T T
0 0
0 0

Fig. 1
0 0

Since the lines DO, DO, etc., or their equals 47T, AT, ete. are the cube roots?
of AD, AD,..., or their equals 70, TO,..., these 70, TO, cte. will be the
cubes of the lines AT, AT, ... The whole figure 40T therefore (consisting of
the infinite number of lines 7'0, T'O, etc., which are the cubes of the arith-
metically progressing lines AT, AT,...) will be to the parallelogram A7TD
(consisting of just as many lines, all equal to the greatest 7°0), as 1 to 4, accord-
ing to our previous theorem. And the half-segment AOD of the parabola (the
residuum of the parallelogram) is to the parallclogram itself as 3 is to 4.

In Proposition 44 the result of these considerations on the quotient of the two series
2r.19* and 3 #* (n + 1 terms) is laid down in a table for & = 0, 1, 2.. .., 10. Wallis dis-
criminates for ¥ between the serics of equals (k = 0), of the first order (k = 1), of the second
order (k = 2), and so forth (series aequalium, primanorum, secundanorum, and so forth).

Proposition 54. Theorem.® If we consider an infinite series of quantities begin-
ning with a point or 0 and increasing continuously as the square, cube, bi-
quadratic, etc. roots of numbers in an arithmetic progression (which I call the
serics of order & = 4, 4, },...), then the ratio of the whole series to the series
of all numbers equal to the highest number is expressed in the following table:

k Result

LI 13
% $} , oraslto 14
FCORE v Y

2 Wallis uses the terms ratio subduplicata, subtriplicata etc., to denote square, cubic, etc.,
roots; the ratio subduplicata of A3|B? is A|B. These terms are not classical, and may be
medieval. Wallis uses them here and in his Mathesis universalis (Oxford, 1657), chap. 30.
The term duplicate ratio is classical; see Euclid, Elements, Book V, Definition 9: if alb = bjc,
then a/c has the duplicate ratio of afb, hence afc = a?/b3. Similarly, triplicate ratio in
Definition 10 means the ratio of cubes. See G. Enestrom, * Ueber den Ursprung des Termes
‘ratio subduplicata’,” Bibliotheca mathematica [3] 4 (1903), 210-211; 6 (1905), 410; 12
(1911-12), 180-181,

3 Propositions 54 and 59 are supplementary, with the tabulation of Ll) a*dzx = 1/(k + 1)
for all positive rational k.
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Wallis calls these series of order 4, 4, ... series subsecundanorum, subtertianorum, etc.
Proposition 59 gives the full table for k& = p/q (Table 1).

Rlofrla|3]:]w0
HEEEAR KRR
ouodroticae 2 | $ |1 8| 3|2 |: | &
Table 1 Cubicae 3 % i‘ § 2‘ E \%
Decimonae 10 1"8 }% B }g ig
P ¥ v &
§ 3 : 3
£ 8 9 §
35§ °

Wallis’s table uses for p the terms aequalium, primanorum, ectc., and for q the terms
quadraticae, cubicae, etc. if ¢ = 2, ¢ = 3, ete.

Proposition 64. If we take an infinite series of quantities, beginning with a
point or 0, continuously increasing in the ratio of any power, an integer or a
rational fraction, then the ratio of the whole to the series of as many numbers
equal to the highest number is 1 divided by the index of this power 1.4

At the end of the explanation Wallis adds: *If we suppose the index irrational, say V3,

then the ratioisas 1 to 1 + V3, ete.”
In Prop. 87 we have the analogous result for negative powers (the term ‘“negative” is used).

Proposition 108. If two series be given, one that of equals, the other of the
first order, and if the first term of the latter series is subtracted from the first
term of the series of equals, the second term from the second term, etc., then
the differences give one-half of the total first series. However, when we add the
term, the aggregates are found to be £ of the series of equals.®

For instance, let R be the arbitrary term of the series of equals and the highest
term of the scries of the first order. Let its infinitely small part be denoted by
a = R/, and let 4 be the number of all terms (or the altitude of the figure);
this number will go to infinity. Then the sum of the aggregates is:

s Horo tho theorem of note 3 is oxplicitly formulatod as *‘ Theorema universalis,”
5 This moans, in our notation, ﬂ; (1 — z)dr =}, j‘(l, (1 + z)de = 3.
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R — Oa R + Oa
R —1la R + la
R — 2a R+ 2a
R — 3a R + 3a
otc. cte.
R—-R R+ R
AR — }AR AR + 3AR

The sum of all equal terms is clearly 4 R. The sum of the terms of the series of
the first order is half of it: {4 R. Now AR — }AR = }AR, AR + }AR = 3AR.
This means that the former series is to the series of equals as } to 1, and the
latter as 3 to 1.

Proposition 111. Theorem. If from a series of equals are subtracted, term by
term, the terms of a series of the second, third, fourth, etc. order, these dif-
ferences give %, }, # of the total series of equals. If we add, the aggregates are
4,5 2 ete. of this total sum.® Indeed, take the terms

R? 1 04 R? F 0a® R* ¥ Oat
R2 1 la? R3® ¥ 14° R ¥ lat
R? § 4a? R® I 8a® R* T 16a*
R2 F 9q2 R® F 2743 R* ¥ 8lat
until R%2 3 R2 R® 3 R? R 3 Rt

Then the sums are (Prop. 44)
AR? T JAR?, AR® T }JAR®, AR* T tAR:
Hence the sum of the differences gives
l1—-4=% 1—-%}=% 1—-%=4% etc
and the sum of the aggregates gives
1+3=% 1+41=% 1+%1=248 etc

Proposition 117. ... We replace the la, 2a, 3a, etc. of previous propositions
by a, b, ¢, ete., to show better the procedure of the operation:?

Series Squares Cubes
R—-0 R? — OR + 00 R® — OR% + 00R — 000
R—a R? — 2u4R + a? R® — 3aR? 4 3aR — a3
R—-b R3 — 2bR + b? .. .
R—-c¢ R2 — 2¢R + ¢*

ete. etc.
R - R R? — 2RR + R? R® — 3RR? + 3R2R — R®
AR — } AR? — 24AR? + JAR? AR?® — 3AR® + 3AR® — JAR®

¢ In our notation, 3 (1 + z")dz = 1 + 1/(n + 1), n > 0.
7 In our notation, 3 (1 — z)*dz = 1/(k + 1) = kij(k + 1), k > 0.
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Hence
1—1=14; 1-3+3=§ 1-$+3-1=§%
or 1x2 1x2x3,

’ 2 x 3 2x3 x4

and so on. We multiply continuously the numbers in arithmetic progression by
cach other (as many as agree with the value of the power), beginning with 1 and
2 and then regularly increasing with 1.

Proposition 121. Corollary. The ratio of the [area of a] circle to the square of
the diameter (or of an ellipse to any of its circumscribed parallelograms) is as
the scries of square roots of the term-by-term differences of the infinite series of
equals and the series of the sccond order to this scries of equals.®

Indecd, if we call R [Fig. 2] the radius of the circle (of which @ = R/co is the
infinitesimally small part), and if we construct an infinite number of per-

Fig. 2

e 9,
v

R

pendiculars or sinus rects in order to complete the quadrant, then these per-
pendiculars are the mean proportionals between the segments of the diameters
(as is well known), or

between R +0, R + la, R + 2a, R + 3a, cte.
and R -0, R — la, R — 2a, R — 3a, etc.
whose rectangles are R2 — 00, R2 — la?, R? — 4a?, R? — 9a?, etc.
the mean prop. are V' R?Z — 00, VR? — 1a3, VR? — 443, VR? — 94, etc.

Hence, whatever the ratio of the sum of these roots is to that of their maxi-
mum (the radius), such is also the ratio of a quadrant of the circle (which con-
sists of these roots) to the square of the radius (which consists of these maxima).
Therefore it is also the ratio of the whole circle to the square of the diameter.

ralio Wallis writes 1:[J (in our notation =/4).°

Proposition 132 [Fig. 3]. If we subtract term by term from the infinite series
of equals the series of the first order (or, if we like, of 4th order), of order

8 In our notation, j' é V1 = 23dx = =/4.

? Tho standard notation = for 4 : [J is duo to William Jones (1675-1749), a friond of Nowton,
who assisted him in having some of his manuscripts published (see Selection V.4). In a
textbook of 1706 he wrote n for 3.14169 etc. Buler adopted it and provided for its universal
accoptance through his Introductio in analysin infinitorum (Lausanne, 1748).
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[1/p =14, 3, ete., then the series of differences and the series of order [k =] 2,
3, 4, etc. formed from them have the same ratio to the series of equals as has 1
to the numbers in [Table 2].2°

k : k
NEIEEEI R NERE) 113]21]%
ofvivfrv ] -5l of1 {30 $[3o] & ko A (t=k+)
1]i]2[3]als ) ol vl
: 1 |2 B
211 13]6jl0|i5]: |66 3 lzel 1] % 3o '% ga Axi%_‘
1 1 28+
3|11{a|10]20(35 Vg |n]ales|3]|] %o
. $ 3o [t [7 [$o ¥ o arep
: 2040 2291
1] 1 {1 |66 [e0s001| : [B84754 2 (31 DE3 aile |8 -_2‘_ én
Table 2 Table 3

This follows from the preceding. Any intermediate number in this table is the
sum of the two numbers next to it, one above and the other to the left.

Proposition 184. In the preceding table we can interpolate in the following
way [Fig. 4].

Proposition 189. We can now interpolate other serics in the preceding table
[as in Table 3].1*

Proposition 191. Problem. It is proposed to determine this term [] as closely
as possible in absolute numbers.

Wallis finds, by further interpolation (see the row for p = } in Table 3, from which can be
derived

W+1)...0+p—

1),
l-2-..p ,l_k+l)k)p>0-The

10 In our notation, R (1 = ztP)edy =

listing (2 + 0)/2, etc. is from Proposition 184.
11 Tho interpolation is by means of tho oxprossions 4, 1, A(2l — 1)/1, etc., with the
insortion of fractional values for 1. Since

fo(U —at)dz = p (3 (1 — y)y»~*dy = pB(p, k + 1),
Jol — 2 rdz =k [5 (1 — y)y*~tdy = kB(k, p + 1),

tho symmetry of the table exprosses the symmetry of the B-function. Both integrals are

oqual to
kp_ T@T(p) Ttk + HI(p + 1)
k+plke+p)~ Tk+p+1)

Tho values for k and p are positive integers and multiples of }. If y = 22, we find

ﬁ, (1 — zr)edr = 2p Is (1 — 22)%z2p-1 dg,

which is & multiple of the integral Ll, z™y* dz, 2® + y? = 1. We can say that Wallis com-
puted this intogral for intogral values of m and k. The symbol o for “infinite” is duo to
Wallis. Seo also T. P. Nunn, “The arithmetic of infinities,”” Mathematical Gazette 5 (1909-
1911), 345-366, 377-380, with a paraphraso of the book.
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- numerum Figuratum;; rationem- habet cognitam.
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that [J is

3 13 x 13
less than  o— o~ 6. T2 x 14 ¥ 119

and

I x3Ixbxb-

<13 x 13 e
greater than T xdxdx0. .12 x 14 Ifs,

and so forth to as closc an approximation as we like.!2
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PROP CLXXXIX.
Theorema.

Inc Jequitur , quod Si ex Tabellz prop. 184. locis vacws upus
quilibet numero noto fuppleatdr, erunt & reliqui omnes cogniti,

Verbi gratia; {i numervs hac now o deﬁinatus fupponatur cognitus, religui
omnes enam cognofcentur; qui nempe eam habent 2d 1ilum raronem quz hic
fubtus indicatur.

=ioi|io |1 40! & [40] A
tfrprinp 1] x |1 (1 }1 {1
N PO T T P P P DL
ool 4014 §o | R |80 8| Ax
NIRRT 2lz0
. 23

I i) i3 5 -——2—-
I DO P L O P O P I e
;uzgc‘g $o |5 g0 8o Uk | AxE :
Tl ut i i N Fti1. g4b44]
R ’§!3 Tle] 4 01 % 11y =gt
it lise ——_—~_ 83t 12/ —2]—3
smixton el g | e @ |HO) R | Ax + e
I L P P O PP DO A Y e st A A o Ve kL
5113435 1ol [ 20 || 35| —% = %
S L VO T O 26 P61 B 6P —161—15
59,7 8 sldo)g o W 'R0 Ax 105
G . A N N
i |rgls) s | e | R =

i : H

24
=161+ 49612417617+ 96!
384

Tows

Tows proceffus demonftratur ex prop. przced. )
Vorzndum autem & hic numerum quemvis intermedium dggregatum effe ex
duobus altero furfum aliéro ad dextram, (non proximis, fed poft inum iritez-
miffam, ) pofitis. . L
Cujufque feriei charalterem (quatenus per prop. 182 & 184 innoteftis,) libuit
euam adjungere, quo melius perfpiciat leéter quoufque remi perduximus:

SC-HOLIUUZM

Atque hactenus quidera rem perduxiffe videamur fadis flicieer. Verum hic
tandem hazret aqua. ~ Neque enim video quo paéto poffim vel quantitatem o repe-
rire, vel charalterem feriei A. ('Et proprerea, nec charafteres ferierum imparium
penitus affequi, licet eorum 2d nvicem rationes cognofcanur; nec imparium fe:
rierum locos impares, quamvis & horum etiam cognofcantur Guas habent 2d in-
vicem rationes.) Quanquam enim i numeri laterales fint integr, puia 1,2, 3, 44
&c: noti fint fericru illarum termini primi; pum 1,4, 4, ¥, & non tamen
facile eft deprehendere quo paflo horum numerorum ad fuos refpedtive numeres
laterales ratio pofliz una aliqua zquatione explicari: vhde & raliquis lateribus (lo-
corum imparium ) 4, 3, #, &c. accommodari poffic fuz cujufque feriei ‘primus
términus. Quanguam.enim hine fpes hon exigra vifs it affulfiffe, lubricus
tamen quem prz manibus habemus Protens tam hic Guaih fuperius on raro elzp-
{us, fpem fe?ellit. Quem autem & hic compiimenti vulaam oftenderit, noa erit

fornaflis mgratum appofuiffz.  Nempe —
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PROP CXCL
Problema,

Ropofitum fit inquirere, quantus fit terminus © (tabellz Prop;
189. ) in numeris abfolutis quam proxime.

Quo facilivs res fuccedas, progreflionis ( ibidera repercz ) termini
1o.1.0.1.40 3%5 4x6_ 3x5x7
2x4. 3xy 2)(4-16
dicatr, «.2.8.5.%. ¢. s, d. &e.
Eftautem 1.2::¢.8. Etz. 3::4.b. Et3.4::8.5. Etg.5::8.c. Etg.6::
5.8, Et6.7::¢.4
b Y c $ d

[4
Hocdlf,:'=§,—;=§)‘§'=§:";'=2)';‘=§"?=¥: &c.

minor g _,
8 duarum{ x“"—';""! minor quam, ¥Yi=v'11.
Ideoque ‘
% majot ix_é:i:; mijor quam, v 3=+'1}.
duarum B =

punor quam, T1¥2=141}.
Et pro‘ptereaﬁ:ax——:u,{

major quam, 1 ¥ i=1vy1}.

Nnnz2 Iem

minor ¢b y ¥ ; a

: —x=— =4 )= —
Teem . dvarumy g * 7~ ?,mmorquam, vi=v1}.
- .

6 g:uagm{ i £ =15 (major quam, ¥i=v1}.
minor quamixy 1§,
major quam § xv 1}.

Et propterea & x %:7 = gu,{

xy 1}. major quf.m

Hoc eft, 0 miner quam ot ”/1 L

R 6 minor quam z—-—:"fxx/:g.

Et ( pari ratione ) eric 'J‘:cx;:j o, 3 ;
x5 sior x .
‘mzjor quam 1—x+xl/1 I

. x3x§xy . XIXFx§
Hoc eft, o mi APRTY ek Mo AL AVE S SR 2 &
oc eft, O minor qu 'nzx“ém'/x; major quam GX“MG\/I

Et (continuatz ejufmodi operadone juxta Tabellz leges) invenictur

. IXIXFXEXTXTXOX xIIXIIxIIxI
minor cuam >3 ek 5r 9 3x13
* 2xaxsx6x6xBx8x10xI0x12x 1214

X3X§XFXGTX7XIX OXIIXIIXI3X13 ey
2xa x4.x6x6x3x8xxoxzoxx"x1~x1+

xv 1.

' major quzm

Et fic deinceps quoufque libet.
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Tz Aliiter.

Poft hanc autems noltram, ipfius quantizatis o defignadonem; libet etiam aliam
fubjungere, quam 2 Nobiliffimo Viro, atque acutiffimo fimul Gecmetra, Dom.
Gu{id. Vicecom. & Barone Breuncker, accepi.

Cum illi progreffionum aliquot mearum propofuerim, & qua lege procederent
indicaverim, id interim rogans, ut qua forma quanttarem ilam commode de-
fignandam putaveri:, indicarer ; Nobuliffimus Vir ille, re apud fe perpenfa, me-
thodo item Infinitorum fibi peculiari quandratera ad
hanc formam commodiffime defignandam judicavit. O =1}s..

Nempe fi unitat adjungatur fractio, quz denominato- TERY &,
rem habeat continte fraftum; ea lege, ut. partcula-

rium frationum Numeratores fint 1, 9, 25, &c. numeri quadratici imparium
1, 3, 5, &. Denominator vero ubique 2 cum adjuncta frattione, & fic 1n infini-
tum.
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CHRISTIANI HUGENII,

ConsT F.

CIRCULI1

MAGNITUDINE
INVENT A

ACCEDUNT EFUSDEM

Problematum quorundam illuftrium
Conftrutiones.
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TAB. Xu.
Fig. 6.

384 CHRISTIANI HUGENII

Prosrema IV. Proros. XX.

Ircumfercntie ad diamerrum yationem inve-

fligare ;s & ex datis inferiptis in dato circals
invenive longstudinem arceam quibas ille fubtendun-
tur.

E fto circulus centro D, cujus diameter C B, & fit arcus

‘B A fextane circumferentiz, cui {ubtenfa ducatur A B,
itemque finus A M. Pofita igitur D B femidiametro par-
tium 100000, totidem quoque cri¢ {ubtenfa B A. A M ve.
r¢ partium 86603 nor: uni minus . hoc eft, fi una pars fi-
ve unitas auferatur ab 86603 fict minor debite.  quippe fe-
miilis lateris trianguli xquilateri circulo infcripti.

Hinc exceffus A B fupra A M fit 13397 vero minor.
Cujus tricns 4465; additus ipfi A B 1000co, flunt partes
104465% minores arcu A B Et hic primus eft minor termi-
nus, quo poftea alium vero propiorem inveniemus. Prius
autem major quoque terminus fecundum Theorema prazce.
dens inquirendus eft.

Tres mmirum funt numeri quibus quartum proportiona-
lem invenire opertet. Primus eft partium duple A B & tri-
plx A M qui erit 459807, vero miner, (nam hoc quoque
obfervandum ut minor fit, idemqueincxteris prout dicetur)
fecundus quadruple A B & fimple A M qui 486603 vero
maj. Et tertius triens excelflus A B fupra A M, 4466 vero
major. Itaque quartus proportionalis erit 4727 vero maj.
quo addito ad A B 100000 fit 104727, major numero pat-

® perpraced tium, quas continet arcus A B, periphericc fextans. % Jam

igitur 1venimus longitudinem arcus A B fecundum mino.
rem majoremque terminum, quorum hic quidem longe pro-
pior vero cft, cum vero proximus fit 104719.

Sed cx utroque iftorum alius minor terminus habebi.
tur priore accuratior fij atamur prcepto fequenti , quod
a diligentiori centrorum gravitatis infpectione depender.

In-
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DE CIRCULI MAGNIT. INVENTA. 38

Inventorum tevminoramdifferentis fefquitertia junpatur du.
ple Jubsenfe &~ finui teiplo, & quam rationem babet ex bis
compofita ad sriplims [e[qritertiam [es 5 utriufque fimul | fi-
nus, fubtenfeque, eandem habeat [ubrenfe fupra fiuum excef-
fus ad aliam quandam; flec ad finumaddsa rectam conflitner
‘arcu wainores.

Minor terminus erat 104465, Major 104727. diffcrentia
horam eft 261! Eftque rurfus tribus numeris invenicndus
quartus proportionalis. Primus cft partium duplz A B &
triplz A M & fefquitertix terminorum differentiz , 460153
veromajor.” Secundus P utriufque fimul AB, A M, 622008
verominor. ‘Lertius denique exceflus A B fupra A M, 13397
vero min. Quibus quartus proportionaliseit 18109 vero min.
Hic igitur additus numero partium A M 86602} vero min.
fiunt 104711} minores arcu A B. Quare fexcuplum eaum,
628269 minus crit circumfcrentid tetd. At quoniam 104727
majores inventx funtarcu A B, earum fexcuplun 625362
circumferentia majus erit.  ltaque circumferentiz ad diame-
trum ratio minor cft quam 628362, masor attem quam 628260
ad 200006. Sive minor quam 34181, major autem quam
314134 ad 100000. Unde conftat minorem utique effe quamn

b4 . . .
triplam fefquifeptimam, & majorem quam 332 Quin etiam
Longomontani error per h.vc' refutatur qui fenpfic peri-
pheriam majorem  efic partibus 314185 qualivm rad.
100000.

E&o nuac arcus A B | circumferentiz, & erit A M, fe-
miflis lateris quadrati circulo inferipti, partium 7071058,
non uni minas, qualium radius D B 10000000. A B vero
Tatus oftanguli partium 7652668 non una majus. Quibus da-
tis ad fimilitmdincm prxcedentivin invenictur primus minor
terminus longitudinis arcus A B 7847868. Dcinde major
terminus 7854066. Et cx utroque rurfus terminus minorac-
curatior 7853885. Unde conftat peripherie ad diamctrum
rationem minorcm haberi quam 514:6}, majorem autem quam
31415 ad 10000.

Et quum tesriinus major 7854066 3 vera  arcus A B lon-

gitu-
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girudine minus diftet quam partibus 8¢; (Eft enim arcus
A B, per ca quz fupra oftendimus, major quam 78;3981)
partes autem 85 efficiant minus quam duos fcrupulos fecun.
dos, hac eft, quam .4}, circumferentiz, nam tota éarun-
dem plures haber quam 6oooooo0: Hinc manifeftum elt,
trianguli reCtanguh ang&ulos queramus cx datis latertbus, eco
modo quo majorem iftum terminum pauld anté, nunquam
duobus ferupulis fecundis aberraturos ; etiamfi 2qualia inter
fe fuerint latera circa angulum retum, veluti hic eranc in
triangulo D A M.

Siveroca fit ratiolaters D MadM A, utangulusA D M
non cxcedat § rett; non-unius tertii fcrupuli-errer crit. Po.
fito enim arcu A B  circumierentiz, erit A M femiffis la.
terisoftanguii zquilatericirculo inferipti partium 382683433,
non und minus. A B vero latus fexdzcanguli 290180644,
non uni amplius, qualium radius D B rooc000000. Unde
primus minor terminus longitudinis arcus A Binvenitur par-
tium 392679714, Terminus autera major 392690148. Et ex
his minor rurfus 3926g9g010. Conftat autemex fuprademon.
ftratis arcum A B f peripheriz , majorem effe quam
392699081, quas terminus major fuperat partibus 7. Ha:
aurcm minus efficiunt uno fcrupulo tertio, heceft, [ 1 - to.
tius circumferenrie , quoniam €a major eft utique q'ugm
600000000 2.

Porro ¢x noviflimis terminis inventis orictur ratio circume-
ferentix ad diametrum minor quam 31415937, major autem
quam 3141592 ad 1oooo0o0.

Quod fi }; circumferentiz ponatur arcus A B, fen par-
tium 6 qualium tota 360: Erit A M femiflis laceris trigin-
tanguli infcripti partium 10452846326766, non uni minus,
qualium radius roococooooodoco. Er A B latus fexagintan.
guli infcripti 10467191248588 non uni amplius. Invenietur-
que ex his arcus A B fecundum primum minorem terminum
10471972889195. Secundum majorem 1047197551258y,
Et cx his minor alter terminus 10471975511302. Unde
cfficitur  peripheriz ad diamctrum, ratio minor quam

314159126438,
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314.15926538 , Mmajor aurtem quam 31415926433 ad
19000000000. o

Quos ferminos fiex additis‘ m(c'nptorum & circumfcripto-
rum polygonorum lateribus inquirendum effet fere ad late-
rum quadringenra mxlha‘dcvcnxcndum. Nam ex fexagintane
gulo infcripto circumicriptoque hoc' tantum probatur, mi-
norem efle rationem peripherix ad diametrum quam 3145 ad
1060, Majorem autem quam 3 140. Adco ut triplum & am-
plius verarum notarum numeram noftro ratiocinio produ-
¢tum apparcat. ldem vero in ulterioribus polygonis fi quis
experiatur femper evenire cernct: non rgnota nobis ratione,
fcd quzx longiori explicatione iudigeret.

Forro sutem quomodo, datis quibufcunquealiis infcriptis,
arcuum quibus fubtenduntur longitudo per hxzcinveniri que-
at fatis puto manifcftum. Si enim guadrati inferipri latere
majores funt, longitudo arcus ad femicircumferentiam reli-
qut inquirenda cft, cujus tum quoque fubtenfa datur. Sci-
endum autem & dimidiorum arcuum fubtenfas inveniricum
totius arcus fubtenfa data eft. Atque hic ratione fi bifeCtioni-
bus uti placebit, potcrimus ad omnem fubtznfam , arcus i-
phius longitudinem gnamlibet verx propinquam non difficul-
ter cognofccre. Utile hoe ad finuum tabulas examinandas.
Ime 2d componendas quoque: quia cogpiti arcus alicujus
fubtenfi, etiam ejus qui paulo major minorve fit fatisaccu-
rate defniri poteft.

Tom. 11 Ccc Curi-
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168 FROM SHAW

39. (RS.CE.6) J. GreEcorY TO COLLINS

ST ANDREWS,
15 February 1671,
SIr, .

Since my last to you I have received three of yours, one dated
December 15, another December 24, the third January 21.* There
is no fear that any of your letters miscarrie; our post here is
abundantly sure; albeit he be slow, for his ordinar is to go to
Edinburgh only once in the fortnight neither durst hazard a letter
with any extraordinar occasion. Not onlie this but also several
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TO COLLINS 169

other studies maturing hath made me slow this time by post in
my answers: but now I shall strive to answer orderlie to all.2
I do not question that all equations may be formed by tables,
but I doubt exceedingly if all equations can be solved by the
help only of the tables of logarithms and sines without serieses.
Yea I judge it absolutely impossible, and have as much ground
for it as convinceth myself. As for the 1, 2, 3, 4 of your discourse
I do not question any of them; but as for the 5, I will hardly take
Dulaurens his word nor yet Irenicle for it, as to your discourse
concerning ranks of numbers your 1st, 20d and 4t T wish ye had
explicat more fully: I doubt not of the 3, but I think it hard
if not impossible, to find by a certain method a series of logarithms
or sines, whose first, second and third differences etc. are the same,
or proportional with the respective given differences of the homo-
genea of an aequation whose roots are in arithmetical progression.
I thank you now kindly for Mr Newton his problem * of interest:
I would humbly desire the like favour (if it were not too much
trouble to you) in sending me Slusius his exercitation.t for I am
exceedingly pleased in what I have seen of his. I cannot express
how much I think myself engaged to you for your account of
new bhooks; if it were not for you, I would be, as it were, dead
to all the world. As to yours, dated 24 Dec., I can hardly beleev,
till I see it, that there is any general, compendious & geometrical
method for adding an harmonical progression; for if it be, it is
also applicable to this following progression —1:—3(—)12, 14(—)19, —15%9, %01(—),

100 s . .
1 but it is evident that the sum of these hath no less denominator
than the product of all the particular denominators, multiplied
among "themselves, which is got by the ordinary and tedious
methods or if you will go to symbols with an harmonical pro-
gression, you ‘will find the same difficulties: it were no hard
matter to give several particular rules, as for example: let a be
2a2
the first term, b the second, the first three are =b +532—_I-)’ the
6a® — 2ba? — ba?
6a? — 7ba + 2b*
compendious than the ordinar. If there be any such universal

first four are =b+ yet I question these be more

* No. 34, p. 142,
1 Sent in May, 1671: No, 42, p. 182,
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170 EXPANSIONS

method I suppose it must be taken from the first, second &
third differences, etc; which I believe will little compendize the
work: at present I have not leisure to examine it, but afterward
Imay. Iadmire much the pocket tube of Mr Newton,? being only
6 inches long to magnify 150 times: if it magnifie the diameter
of the object so it is incredible; if the superficies it may sufficiently
discover the Satellites of Jupiter, & consequently be extra-
ordinarily good: if the soliditie, it must be but ordinar, & not
sufficient for that effort: but that, which I think strange, is that
it doth not so at a short distance: for certainlie al tubes in a
shorter distance are drawn to a greater length, and consequentlie
magnifieth more; and in a short distance the due figure is an
Cartesian spheroid, which approacheth the more the segment of
a sphere, than an hyperbolic conoid, which is the just figure for
a considerable distance. I suppose the tube must be overcharged
by the eyeglass, & so sufficiently discover the Satellites of Jupiter
because of its great magnification (which here only is required)
but it must fail in near objects (which require a distinct vision)
because of the confused sight occasioned by the overcharging.
As for Mr Newton’s universal method,* I imagine I have some
knowledge of it, both as to geometrick & mechanick curves,
however I thank you for the series ye sent me, and send you these
following in requital. -Sit radius=r, arcus=a, tangens=t,
. 3 3 14 t°

secans =s, erit a« =¢ 3 +~5—r-4 - '77é+'§)73
eritque t=a J—E3—+E“—5 + 17a” | _3233a%

4 T3 T 150 T 3156 T 18144055

a®  Sa'  6la®  277a%

et S=TH o Y 94 TR0, T 506477
Sit nunc tangens artificialis=¢, & secans artificialis=s, &

. . a:  at a’ 17a3 3233al0

integer quadrans =g, erit s= 57 t19;3 7 455 T 352077 T 18144007%°
.. . el ed 61e? 277e® . ] '

Sit 2a¢ ~g=e, erit t =e -+ ) + 5i + 50407 + 73570 SinunCsecans

artificialis 45°=s, sitque s+1I secans artificialis ad libitum, erit
) 243 74 1415 45208

ejus arcus =~’2~q+l—7+5§~§5+—37;—15;;;

3 3 61¢7 277 19

67> " 247 T 504070 T 72576 78

eritque 20 ~q=1t-
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ON BARROW 171

Ye shall here tak notice that the radius artificialis =0, and that
when ye find ¢ >2a, or the artificial secant of 45° to be greater
than the given secant, to alter the signs and go on in the work
according to the ordinary precepts of Algebra. Sit ellipsis ® cujus
alter semiaxis=r, alter =c¢, ex quolibet curvae ellipticae puncto
demittatur in semiaxem r recta perpendicularis =a: erit curva
elliptica perpendiculari @ adjacens

r2a3  4r2ciab —ria® Sc4r2a’ 4 r%a’ — 4crfa’?
F T T 112¢1
G4ctr2a?® ~ 48ctria? 4 24¢% % — 5r8a®
115216 ’

=a+

Si determinetur ellipscos specics, series hace simplicior evadet.
Ut si ¢ =2r, foret curva predicta
ad 3a’ 113a? 3419¢®
@+ 96r * 20485 T 158752,% T 7549747975

Reliquis vero manentibus, si curva praedicta esset hyperbola,
praedicta quoque series ei inserviret, si omnium terminorum partes
affirmentur; et negentur, totus terminus tertius, totus quintus,
septimus, et in locis imparibus. I thank you werie heartilie
for your good advice, as to the publication of my notions, and
for your civil profer; I would be very sorry to put you to so
much trouble. I have no inclination to publish anything, save
only to reprint my quadratura of the circle, and to add some
little trifle to it. As to my method of finding the roots of all
equations; one series gives only one root, but for every root there
may be infinite number of series: there is some industrie required
to enter the series, and to know which root it relateth to; but
it is like I may entertain you at more length with this matter
hereafter. Ye need not be so closehanded of anything I send
you: ye may communicate them to whom ye will, for I am little
concerned if they be published under others’ name or not. I pray
you thank Dr Barrow in my name for the pains he hath been at
for my satisfaction ¢: I do werie much admire the fertility of his
wit. If ye please, ye may communicate this following unto him.
DE?
2
etiam posito rectam THO eandem esse cum curva KXL in 2do
Problemate: nescio an ex hoc capite ulla possit dari 24! problematis

In primo praeclarissimi D. Barrow problemate HMDO =
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solutio. Vereor plenam tertii problematis solutionem a secundo
non dependere: si enim EZF fuerit recta rectae AD parallela;
ex secundo problemate (quod in hoc casu idem est cum 1m°) integre
soluto, datur tantummodo, sicut ego percipio, una tertii problematis
solutio, nempe VADB rectangulum, cujus latus VA=AE vel DF:
si vero infinitae non dentur, sicut dubito in omnibus hisce, datur
saltem altera, nimirum VADB semicirculus, cujus radius est
aequalis ipsi AE vel DF. Subtilissima sunt et acerrima ingenii
specimina, quae subjungit vir doctissimus, existimo theoremata
illa non solum maximas quantitates sed etiam minimas quandoque
determinare 7; ex. gr. (in 1me theoremate) si cycloformis potestatis
m centro D, diametro DA (siita loqui liceat) descripta, per punctum
L, tota intra curvam BLA cadat; erit DG™+GL™ absolute
minimum. Si vero dicta cycloformis alibi occurrat curvae BLA,
dantur plura minima. Si cycloformis tota extra curvam BLA
cadat; erit DG™+GL™ absolute maximum, si alibi, occurrat,
dantur plura maxima. Idem etiam dicimus in 249° theoremate,
Si supponatur BLA extendi in rectam, et super eadem in punctis
suis, respectivis ordinatas LG perpendiculariter erigi; item centro
B, diametro BLA; per punctum G cycloformem describi. Quae
hic censemus, tertio et quarto theoremati applicamus, ponendo
hyperboliformem potestatibus debitam loco cycloformis, in hoc
solo est discrimen, quod (cum hyperboliformis sit figura inter-
minabilis) in figura terminata BDA non detur absolute minimum.
Si fuerit TG semper ad GL sicut determinata R ad aliam ex puncto
G ipsi AD perpendiculariter erectam) et ex hisce aliis descripta
figura vel illi analoga ponatur loco cycloformis, eadem adhuc
quinto applicat. Denique si super AD ex punctis G erigantur
perpendiculares, quarum quadrata aequentur spatii semper
respectivi ADGL duplo, et figura ex his conflata ponatur vice
cycloformis, dicta quoque sexto applicantur. No more at present
but rests
Your humble servant
J. GREGORIE.
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The Discovery of the Series Formula for 7 by
Leibniz, Gregory and Nilakantha

RANJAN ROY

Beloit College
Beloit, WI 53511

1. Introduction
The formula for 7 mentioned in the title of this article is

1
=l—.—'+3—";+"‘. (1)

X 1 1
arctan x = dt
o 1+142
3 5 2+l 2n+2
X X n X n+1 t
—x-F 43 +(-1)" 57 + (1) /(,1+t2d"
The last integral tends to zero if |x| < 1, for
X t'.’.u+2 X ane2 |x|2n+«’3
fo-i—-:t—zdts‘fot (lt—2“+3—>0 as n —x,
Thus, arctan x has an infinite series representation for |x| < 1:
P
3 3
X x
urctan.\'=.\'—§—+-5—‘——"‘. (2)

The series for 7 /4 is obtained by setting x =1 in (2). The scries (2) was obtained
independently by Gottfried Wilhelm Leibniz (1646-1716), James Gregory
(1638-1675) and an Indian mathematician of the fourteenth century or probably
the fifteenth century whose identity is not definitely known. Usually ascribed to
Nilakantha, the Indian proof of (2) appears to date from the mid-fifteenth century and
was a consequence of an effort to rectify the circle. The details of the circumstances
and ideas leading to the discovery of the series by Leibniz and Gregory are known. It
is interesting to go into these details for several reasons. The infinite series began to
play a role in mathematics only in the second half of the seventeenth century. Prior to
that, particular cases of the infinite geometric serics were the only ones to be used.
The arctan series was obtained by Leibniz and Gregory carly in their study of infinite
series and, in fact, before the methods and algorithns of calculus were fully
developed. The history of the arctan series is, therefore, important because it reveals
early idcas on series and their relationship with quadrature or the process of finding
the arca under a curve. In the case of Leibniz, it is possible to sce how he used and
291
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transformed older idecas on quadrature to develop his methods. Leibniz's work, in fact,
was primarily concerned with quadrature; the 7 /4 series resulted (in 1673) when he
applied his method to the circle. Gregory, by comparison, was interested in finding an
infinite series representation of any given function and discovered the relationship
between this and the successive derivatives of the given function. Gregory's discov-
ery, made in 1671, is none other than the Taylor scries; note that Tavlor was not born
until 1685. The idcas of caleulus, such as integration by parts, change of variables, and
higher derivatives, were not completely understood in the early 1670s. Some particu-
lar cases were known, usually garbed in geometric language. For cexample, the
fundamental theorem of caleulus was stated as a geometric thecorem in a work of
Gregory's written in 1668. Similar examples can also be scen in a book by Isaac
Barrow, Newton’s mentor, published in 1670. Of course, very soon alter this transi-
tional period, Leibniz began to create the techniques, algorithms and notations of
calculus as they arc now known. He had been preceded by Newton, at Ieast as far as
the techniques go, but Newton did not publish anything until considerably later. It is,
thercfore, possible to sce how the work on arctan was at once dependent on carlier
concepts and a transitional step toward later ideas.

Finally, although thc proofs of (2) by Leibniz, Gregory and Nilakantha are very
different in approach and motivation, they all bear a rclation to the modern proof
given above.

2. Gottfried Wilhelm Leibniz (1646-1716)

Leibniz’s mathematical background! at the time he found the /4 formula can be
quickly described. He had camed a doctor’s degree in law in February 1667, but had
studied mathematics on his own. In 1672, he was a mere amateur in mathematics.
That year, he visited Paris and mct Christiaan Huygens (1629-1695), the foremost
physicist and mathematician in continental Europe. Leibniz told the story of this
meeting in a 1679 letter to the mathematician Tschirnhaus, “at that time... I did not
know the correct definition of the center of gravity. For, when by chance I spoke of it
to Huygens, 1 lct him know that I thought that a straight line drawn through the
center of gravity always cut a figurc into two equal parts, ... Huygens laughed when
he heard this, and told me that nothing was further from the truth. So 1, excited by
this stimulus, began to apply myself to the study of the more intricate geometry,
although as a matter of fact 1 had not at that time rcally studied the Elements
[Euclid]... Huygens, who thought me a better geometer than I was, gave me to read
the letters of Pascal, published under the name of Dettonville; and from these 1
gathered the method of indivisibles and centers of gravity, that is to say the
well-known methods of Cavalieri and Guldinus.”2

"For further information about Leibniz's mathematical development, the reader may consult: ). E.
Hofinann, Leilmiz in Paris 1672-1676 (Cambridge: The Cambridge University Press, 1974) and its review
by A. Weil, Collected Papers Vol. 3 (New York: Springer-Verlag, 1979). An English translation of Leibniz’s
own account, Historia et origo caleuli differentialis, can be found in J. M. Child, The Early Mathematical
Manuscripts of Leibmiz (Chicago: Open Court, 1920). An casily available synopsis of Leibniz’s work in
calenlus s given in Co 1L Edwards, Jr.. The Historical Decelopment of the Caleulus (New York:
Springer-Verlag, 1979).

*The Early Mathematical Manuscripts. p. 215.

Bonaventura Cavalieri (1598-1647) published his Geometria Indivisibilibus in 1635. This hook was very
influential in the development of caleulus. Cavalieri's work indicated that
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The study of Pascal playved an important role in Leibniz’s development as a
mathematiciun, It was from Pascal that he learned the ideas of the “characteristic
triangle” and “transmutation.” In order to understand the concept of transmutation,
suppose A and B are two arcas (or volumes) which have been divided up into
indivisibles usually taken to be infinitesimal rectangles (or prisms). If there is a
one-to-one  correspondence  between the indivisibles of A and B and if these
indivisibles have equal arcas (or volumes), then B is said to be obtained from A by
transmutation and it follows that A and B have equal arcas (or volumes). Pascal had
also considered infinitesimal triangles and shown their use in finding, among other
things, the arca of the surface of a sphere. Leibniz was struck by the idea of an
infinitesimal triangle and its possibilitiecs. He was able to derive an interesting
transmutation formula, which he then applied to the quadrature of a circle and
thereby discovered the series for . To obtain the transmutation formula, consider
two ncighboring points P(x,y), and Q(x + dx,y +dy) on a curve y =f(x). First
Leibniz shows that arca (AOPQ) = (1/2) arca (rectangle (ABCD)). Sce Ficure 1.
Here PT is tangent to = f(x) at P and OS is perpendicular to PT. Let p denote
the length of OS and = that of AC = BD = ordinate of T.

FIGURE 1

« at
x"dy = ———.
f‘, n+1

when n is a positive integer.

Blaise Pascal (1623-1662) made important and fundamental contributions to projective  geometry,
probability theory and the development of calculus. The work to which Leibniz refers was published in
1658 and contains the first statement and proof of

0
f sind dp = cos 0, — cos 6.
a"
This proof is presented in D. J. Struik’s A Source Book in Mathematics 1200-1800 (Cambridge: Harvard
University Press, 1969), p. 239.

Paul Guldin (1577-1643), a Swiss mathematician of considerable note, contributed to the development
of calculus, and his methods were generally more rigorous than those of Cavalieri.
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Since AOST is similar to the characteristic A PQR,

where ds is the length of PQ. Thus,
1 1
area (OPQ) = ipds = 3 adx. (3)
Now, observe that for cach point P on y =f(x) there is a corresponding point A.
Thus, as P moves from L to M, the points A form a curve, say Z = g(x). If scctor

OLM dcnotes the closed region formed by y = f(x) and the straight lines OL and
OM, then (3) implics that
1 /b

area (sector OLM ) = 5 ) &(x)dx. (4)

This is the transmutation formula of Leibniz. From (4), it follows that the area under

y=f(x)is

: I
J'ydx = 5£(b) = §(a) +area (sector OLM)

- -_%—([xy]”:+j;h;dx). (5)

This is nonc other than a particular case of the formula for integration by parts. For it
is casily scen from Ficure 1 that

dy
FEY TG (6)
Substituting this valuc of 5 in (5), it follows that

1
/)y(l.\' =[]’ - ff(h)x dy,
a Sa)

which is what onc gets on integration by parts.
Now consider a circle of radius 1 and center (1,0). Its equation is y2 =2x —x
In this casce, (6) implics that

2

z=V2xr—x? (1 x) 2‘ =:“, @)
Vax —x? -y
so that
22
x= <. 8
TR (8)

In Ficune 2, let AOB = 26. Then the arca of the sector AOB = @ and
0 = arca ( & AOB) + arca (region between are AB and line AB). (9)

By the transmutation formula (4), the sceond arca is 3 [fzdt where s is given by (7).
Now, from Ificure: 3 below it is seen that
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B(x.y) z=g(x)
‘]
26\ (1.0) 1
A Cc o
FIGURE 2 x
FIGURE 3

1 X 1 z
,-2‘-/(;,.,(1!—5(.\..—](;1(1“). (10)

Using (8) and (10), it is now possible to rewrite (9) as

Nj—

6

|-

= tz
y+Ax:,—-_/; l+t2dt

]

[z(2—x) +xz] - /:# dt (since y =z(2 —x))

s 42
=z~f 5 dt.
o 1+t

At this point, Leibniz was able to use a technique employed by Nicolaus Mercator
(1620-1687). The latter had considered the problem of the quadrature of the
hyperbola y(1 + x) = 1. Since it was alrcady known that

he solved the problem by expanding 1/(1 + x) as an infinite series and integrating
term by term. He simultaneously had the cxpansion for log(l + x). Mcrcator pub-
lished this result in 1668, though he probably had obtained it a few years carlier. A
year later, John Wallis (1616—1703) determined the values of x for which the series is
valid. Thus, Leibniz found that

w

~3 P

b=z-T+T - (1)

In Ficure 2, ABC = 0 and z = x/y = tan 6. Therefore, (11) is the series for arctan z.

Of course, Leibniz did not invent the notation for the integral and differential used
above until 1675, and his description of the procedures is gecometrical but the ideas
are the same.

The discovery of the infinite scries for m was Leibniz’s first great achicvement. He
communicated his result to Huygens, who congratulated him, saying that this
remarkable property of the circle will be celebrated among mathematicians forever.
Even Isaac Newton (1642-1727) praised Leibniz’s discovery. In a letter of October
24, 1676, to Henry Oldenburg, sccretary of the Royal Society of London, he writes,
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“Leibniz’s method for obtaining convergent series is certainly very clegant, and it
would have sufficiently revealed the genius of its author, cven if he had written
nothing else.”® Of course, for Leibniz this was only a first step to greater things as he
himself says in his “Historia ct origo calculi differentialis.”

3. James Gregory (1638-1675)

Leibniz had been anticipated in the discovery of the scries for arctan by the Scottish
mathematician, James Gregory, though the latter did not note the particular case for
w/4.* Since Gregory did not publish most of his work on infinite series and also
because he died carly and worked in isolation during the last seven years of his life,
his work did not have the influcnce it deserved. Gregory's early scientific interest was
in optics about which he wrote a masterly book at the age of twenty-four. His book,
the Optica Promota, contains the carliest description of a reflecting telescope. It was
in the hope, which ultimately remained unfulfilled, of constructing such an instru-
ment that he travelled to London in 1663 and made the acquaintance of John Collins
(1624-1683), an accountant and amateur mathematician. This friendship with Collins
was to prove very important for Gregory when the latter was working alone at St.
Andrews University in Scotland. Collins kept him abreast of the work of the English
mathematicians such as Isaac Newton, John Pell (1611-1685) and others with whom
Collins was in contact.’

Gregory spent the years 1664-1668 in Italy and camc under the influence of the
Italian school of geometry founded by Cavalieri. It was from Stefano degli Angeli
(1623-1697), a student of Cavalieri, that Gregory learned about the work of Pierre de
Fermat (1601-1665), Cavalieri, Evangelista Torricelli (1608—1647) and others. While
in Italy, he wrote two books: Vera Circuli et Hyperbolaec Quadratura in 1667, and
Geometriae Pars Universalis in 1668. The first book contains some highly original
ideas. Gregory attempted to show that the area of a general sector of an cllipse, circle
or hyperbola could not be expressed in terms of the areas of the inscribed and
circumscribed triangle and quadrilateral using arithmetical operations and root extrac-
tion. The attempt failed but Gregory introduced a number of important ideas such as
convergence and algebraic and transcendental functions. The second book contains
the first published statement and proof of the fundamental theorem of calculus in
geometrical form. It is known that Newton had discovered this result not later than
1666, although he did not make it public until later.

Gregory rcturned to London in the summer of 1668; Collins then informed him of
the latest discoveries of mathematicians working in England, including Mercator’s
recently published proof of

¥ %3
log(l+x)=x——2—+_§._...

3See H. W. Turnbull (ed.). The Correspondence of Isaac Newton (Cambridge: The University Press,
1960), Vol. 2, p. 130.

4Peter Beckmann has persuasively argued that Gregory must have known the series for /4 as well.
See Beckmann's A History of Pi (Boulder, Colorado: The Golem Press, 1977), p. 133.

3The reader might find it of interest to consult: H. W. Turnbull (ed.), James Gregory Tercentenary
Memorial Volume (London: G. Bell, 1939). This volume contains Gregory's scientific correspondence with
John Collins and a discussion of the former's life and work.
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Meditation on these discoveries led Gregory to publish his next book, Exercitationes
Geometricae, in the winter of 166%. This is a sequel to the Pars Universalis and is
mainly about the logarithmic function and its applications. It contains, for example,
the first evaluations of the indefinite integrals of sec v and tan x.* The results are
stated in geometric form.

In the autumn of 1668, Gregory was appointed to the chair in St. Andrews and he
took up his duties in the winter of 1668 /1669. He began regular correspondence with
Collins soon after this, communicating to him his latest mathematical discoveries and
requesting Collins to keep him informed of the latest activities of the English
mathematicians. Thus, in a letter of March 24, 1670, Collins writes, “Mr. Newtone of
Cambridge sent the following series for finding the Area of a Zone of a Circle to Mr.
Dary, to compare with the said Dany’s approaches, putting R the radius and B the
parallel distance of a Chord from the Diameter the Area of the space or Zonc between
them is =

B B> B* 5BY .

3R~ 20R® 36R> 576R'

This is all Collins writes about the series but it is, in fact, the value of the integral
2/B(R? —x2)"/2dx after expanding by the binomial theorem and term by term
integration. Newton had discovered the binomial expansion for fractional exponents
in the winter of 1664 /1663, but it was first made public in the aforementioned letter
of 1676.to Oldenburg.

There is evidence that Gregory had rediscovered the binomial theorem by 1668.%
However, it should be noted that the expansion for (1 — x)'/2 does not necessarily

A proof of the formula
0 T 0
]; secddd = logmn(z + §)

was of considerable significance and interest to mathematicians in the 1660's due to its connection with a
problem in navigation. Gerhard Mercator (1512-1594) published his engraved “Creat World Map™ in
1569. The construction of the map employed the famous Mercator projection. Edward Wright, a Cam-
bridge professor of mathematics, noted that the ordinate on the Mercator map corresponding to a latitude
of 8% on the globe is given by ¢ff sce ¢ de, where ¢ is suitably chosen according to the size of the map. In
1599, Wright published this result in his Certaine Errors in Navigation Corrected, which also contained a
table of latitudes computed by the continued addition of the sccants of 1°,2',3", ete. This approximation to
J& sec ¢ dg was sufficiently exact for the mariner’s use. In the early 1640’s, Henry Bond observed that the
values in Wright's table could be obtained by taking the logarithm of tan(w/4 + @ /2). This observation
was published in 1645 in Richard Norwood's Epitome of Natigation. A theoretical proof of this observation
was very desirable and Nicolaus Mercator had offered a sum of money for its demonstration in 1666. John
Collins, who had himself written a book on navigation, drew Gregory's attention to this problem and, as we
noted, Gregory supplicd a proof. For more details, one may consult the following two articles by F. Cajori:
“On an Integration ante-dating the Integral Calculus,” Bibliotheca Mathematica Vol. 14 (1913/14), pp.
312-19, and “Algebra In Napier’s Day and Alleged Prior Invention of Logarithms,” in C. G. Knott (ed.),
Napier Memorial Volume (London: Longmans, Green & Co., 1915), pp. 93-106. More recently, J. Lohne
has established that Thomas Harriot (1560-1621) had evaluated the integral ff sec ¢ d in 1594 by a
stereographic projection of a spherical loxodrome from the south pole into a logarithmic spiral. This work
was unpublished and remained unknown until Lohne brought it to light. See J. A. Lohne, “Thomas Harriot
als Mathematiker,” Centaurus, Vol. 11, 1965-66, pp. 19-45. Thus it happened that, although [ sec 8 d6 is a
relatively difficult trigonometric integral, it was the first one to be discovered.

7jamcs Gregory, p. 89.

¥Sec The Correspondence of Isaac Newton, Vol. 1, p. 52, note 1.
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imply a knowledge of the binomial theorem. Newton himsclfl had proved the
expansion by applying the well-known mecthod for finding square roots of numbers to
the algebraic expression 1 — x. Moreover, it appears that the expansion of (1 — x)'/?
was discovered by Henry Briggs (1556—-1630) in the 1620’s, while he was construct-
ing the log tables.® But there is no indication that Gregory or Newton knew of this. In
any case, for reasons unknown, Gregory was unable to make anything of the
series—as evidenced by his reply of April 20, “I cannot understand the series you
sent me of the circle, if this be the original, I take it to be no series.”'® However, by
September 5, 1670, he had discovered the general interpolation formula, now called
the Gregory-Newton interpolation formula, and had made from it a number of
remarkable deductions. He now knew how “to find the sinus having the arc and to
find the number having the logarithm.” The latter result is precisely the binomial
expansion for arbitrary exponents. For, if we take x as the logarithm of y to the base
1+d, then y = (1 + d)* and Gregory gives the solution as

(14d) =1+xd + "'(‘I_—Ql)d% \(\—11;(\3— D gp4 ... M

It is possible that Newton's series in Collins’ letter had set Gregory off on the course
of these discoverics, but he did not cven at this point see that he could deduce
Newton’s result. Soon after, he did observe this and wrote on December 19, 1670, “I
admire much my own dullness, that in such a considerable time I had not taken
notice of this.”'2 All this time, he was very cager to lcarn about Newton’s results on
series and particularly thc methods he had used. Finally on December 24, 1670,
Collins sent him Newton’s scries for sinx, cos x, sin”'x and x cot x, adding that
Newton had a universal method which could be applicd to any function. Gregory then
made a concentrated effort to discover a general method for himself. He succeeded.
In a famous letter of February 15, 1671 to Collins he writes, “As for Mr. Newton’s
universal method, I imagine I have some knowledge of it, both as to geometrick and
mechanick curves, however 1 thank you for the series ye sent me and send you these
following in requital.”*® Gregory then gives the series for arctan x, tanx, secx,
log secx, log lun(% + -x—), arcsce(v2 e*), and 2arctan tanh x /2. However, what he
had found was not Newton’s method but rather the Taylor expansion more than forty
years before Brook Taylor (1685-1731). Newton's method consisted of reversion of
series, expansion by the binomial theorem, long division by series and term by term
integration.'* Thinking that he had rediscovered Newton’s method, Gregory did not

YSee P, T. Whiteside, " Henry Briggs: The Binomial theorem Anticipated,” The Mathematical Gazette,
Vol. 15, (1962), p. 9. Whiteside shows how the expansion of (1 +x)'72 arose out of Brigg’s work on
logarithms.

10 .
James Gregory., p. 92.

YIn their review of the Gregory Memorial Volume, M. Dehn and E. Hellinger explain how the
binomial expansion comes out of the interpolation formula. See The American Mathematical Monthly, Vol.
50, (1943), p. 149.

l""]mu('.\’ Gregory, p. 118,
Y bid.. p. 170.

M1t should be mentioned that Newton himsell discovered the Taylor series around 1691, See D. T.
Whiteside (o). The Mathematical Papers of Isaac Newton, Vol. Vi1 (Cambridge: The Cambridge
University Press, 1976), p. 19, In fact, Taylor was anticipated by at least five mathematicians. However, the
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publish his results. It is only from notes that he made on the back of a letter from
Gedeon Shaw, an Edinburgh stationer, dated January 29, 1671, that it is possible to
conclude that Gregory had the idea of the Tavlor scries. These notes contain the
successive derivatives of tan x, scc x, and the other functions whose expansions he
sent to Collins. The following extract from the notes gives the successive derivatives

ly d?
of tan 6; here m is successively y, % Toi;', ete., and ¢ = r tan 6. Gregory writes'®:
l
st 2nd 3rd 4th
2 2 3 8 2 6 4
m=gq 111=:'+(—’7 m=2q+—%—- m=2r+‘——(L—+—q,,—
[ r r J
Sth 6th
) 4047 2447 ) 13642 240" 120¢4°
m=16q + 2 +r_”' m = 16r + - + e + 5
7th

3 3 T
m=272q +987L + 1680 L + 720
r r r
8th

2 4 6 8
m =272r + 3233 + 113615 + 13440% + 5040%.
r r r

It is clear from the form in which the successive derivatives are written that each one
is formed by multiplying the derivative with respect to ¢ of the preceding term by

2
q . . . .
r+ L. Now writing @ =r, Gregory gives the scries in the letter to Collins as

follows:
a® 2a° 174" 32334

tanf=a+— + .
TN AT T T 1507 T 31570 | 1814407°

The reasons for supposing that these notes were written not much before he wrote to
Collins and were used to construct the series are (i) the date of Gedeon Shaw's letter

3
and (ii) Gregory’s error in computing the coefficient of —(l—; in the 7th m, which should
r
be 1232 instead of 987 and which, in turn, leads to the error in the 8th m, where the

2
coefficient of qT should be 3968 instead of 3233. This error is then repeated in the
series showing the origin of the series. Morcover, in the carly parts of the notes,
Gregory is unsure about how he should write the successive derivatives. For example,
he attempts to write the derivative of sec 8 as a function of sec 8 but then abandons
the idea. He comes back to it later and sees that it is easier to work with m? instead
of m since the m®’s can be expressed as polynomials in tan 6. This is, of course,
sufficient to give him the series for sec 8. The series for log sec 6 and log tan(7r /4 + 9)
he then obtains by term by term integration of the series for tan6 and scc@

Taylor series is not unjustly named after Brook Taylor who published it in 1715. He saw the importance of
the result and derived scveral interesting consequences. For a discussion of these matters see: I
Feigenbaum, “Brook Taylor and the Mcthod of Increments,” Archive for History of Exact Sciences, Vol. 34,
(1985), pp. 1-140.

""]ame.v Gregory, p. 352.

100



300 MATHEMATICS MAGAZINE

respectively. Naturally, the 3233 error is repeated. He must have obtained the scries
for arctan x from the 2nd m which can be written as
da r? q*  q°

— T — -._..+.____...

dg — r?4+gq* r2 ol

The arctan series follows after term by term integration. Clearly, Gregory had made
great progress in the study of infinite series and the calculus and, had he lived longer
and published his work, he might have been classed with Newton and Leibniz as a
co-discoverer of the calculus. Unfortunately, he was struck by a sudden illness,
accompanied with blindness, as he was showing some students the satellites of
Jupiter. He did not recover and died soon after in October, 1675, at the age of
thirty-seven.

4. Kerala Gargya Nilakantha (c.1450-c.1550)

Another independent discovery of the series for arctan x and other trigonometric
functions was made by mathematicians in South India during the fifteenth century.
The scries arc given in Sanskrit verse in a book by Nilakantha called Tantrasangraha
and a commentary on this work called Tantrasangraha-vakhya of unknown author-
ship. The theorems are stated without proof but a proof of the arctan, cosine and sine
series can be found in a later work called Yuktibhasa. This was written in Malayalam,
the language spoken in Kerala, the southwest coast of India, by Jyesthadeva
(c.1500-¢.1610) and is also a commentary on the Tantrasangraha. These works were
first brought to the notice of the western world by an Englishman named C. M.
Whish in 1835. Unfortunately, his paper on the subject had almost no impact and
went unnoticed for almost a century when C. Rajagopal'® and his associates began
publishing their findings from a study of these manuscripts. The contributions of
medieval Indian mathematicians are now beginning to be recognized and discussed
by authorities in the ficld of the history of mathematics.!”

It appears from the astronomical data contained in the Tantrasangraha that it was
composed around the year 1500. The Yuktibhasa was written about a century later. It
is not completely clear who the discoverer of these series was. In the Aryabhatiya-
bhasya, a work on astronomy, Nilakantha attributes the series for sine to Madhava.
This mathematician lived between the ycars 1340-1425. It is not known whether

' Rajagopal’s work may be found in the following papers: (with M. S. Rangachari) “On an Untapped
Source of Medieval Keralese Mathematies,” Archive for History of Exact Sciences, Vol. 18, (1977), pp.
89-102; “On Medieval Kerala Mathematies,” Archive for History of Exact Sciences, Vol. 35, (1986), pp.
91-99. These papers give the Sanskrit verses of the Tantrasangrahavakhya which describe the series for
the arctan, sine and cosine. An English translation and commentary is also provided. A commentary on the
proof of arctan series given in the Yuktibhasa is available in the two papers: “A Neglected Chapter of
Hindu Mathematies,” Seripta Maghematica, Vol. 15, (1949), pp. 201-209; “On the Hindu Proof of
Cregory's Series.” Ihid.. Vol. 17, (1951), pp. 65-74. A commentary on the Yuktibhasa's proof of the sine
and cosine series is contained in C. Rajagopal and A. Venkataraman, “The sine and cosine power serics in
Hindu mathematics,” Journal of the Royal Asiatic Society of Bengal, Science, Vol. 15, (1949), pp. 1-13.

TSee ). K. Hofmann, “Uber cine alt indische Bevechmimg von a1 und ihre allgemeine Bedeutung,”
Mathematische-Physikalische Semester Bervichte, Bd. 3, 1.3 /4, Hamburg (1953). Sce also D. T. Whiteside,
“Patterns of Mathematical Thought in the Tater Seventeenth Century,” Archive for History of Exact
Sciences, Vol. 1, (1960-1962), pp. 179-3868. For a discussion of medieval Indian mathematicians and the
Tantrasangraha in particular, one might consult: A. P. Jushkevich, Geschichte der Mathematik in Mittelalter
(CGerman translation Leipzig, 1964, of the Russian original, Moscow, 1961).
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Madhava found the other series as well or whether they are somewhat later
discoverics.

Little is known about these mathematicians. Madhava lived near Cochin in the very
southern part of India (Kerala) and some of his astronomical work still survives.
Nikikantha was a versatile genius who wrote not only on astronomy and mathematics
but also on philosophy and grammar. His crudite expositions on the latter subjects
were well known and studied until recently. He attracted several gifted students,
including Tuncath Ramanujan Ezuthassan, an carly and important figure in Kerala
literature. About Jvesthadeva, nothing is known except that he was a Brahmin of the
house of Parakroda.

In the Tantrasangraha-vakhya, the scrics for arctan, sinc and cosine are given in
verse which, when converted to mathematical symbols may be written as

1 - 1 o 1 -
/';11‘ct;1lll=-1—-%—§'ii{—)—+:)—-%— ,whcrc%sl,
; : 3 x 2 x :
{ s? + s i s* (sinc)
S — g — — ~ — - (sine
y (27+2)r 0 (22+2)r2 (42 +4)r?
2 2 2
§ 5 s
F—x=r- — e — = - —— =+ -+ (cosine).
(22 -2)r? (22-2)r? (42 -49r? ( )
r
y s
s
X r—x
FIGURE 4

There are also some special features in the Tantrasangraha’s trcatment of the
series for 7 /4 which were not considered by Leibniz and Gregory. Nilakantha states
some rational approximations for the error incurred on taking only the first n terms of
the scries. The expression for the approximation is then used to transform the series
for /4 into one which converges more rapidly. The errors are given as follows:

T 1 1 1 .
Z=l—'§+g—"'+;iﬁ(n+l) i=1,2,3, (12)
where
1 _ n/2 _ (n/2)*+1
filn) = 5. fon) = 7 and fy(n) = T t8)n/2
The transformed series arc as follows:
T 3 1 1 1
i1ty 3 e s o7 (13)
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and

T 4 4 4

p— — + — —_ e
4 1°+4-1 3°+4-3 5°+4-5

Leibniz's proof of the formula for /4 was found by the quadrature of a circle. The
proof in Jyesthadeva's book is by a direct rectification of an arc of a circle. In the
diagram given below, the arc AC is a quarter circle of radius one with center O and
OABC is a square. The side AB is divided into n equal parts of length 8 so that
nd=1, P._,P.=6. EF and P._,D arc perpendicular to OP,.. Now, the triangles

OEF and OP,_, D are similar, which gives

EF Pr—lD : Pr—lD
OE ~0P_, that is, EF = 0P,
o A=P,
E
F Pr—l
¢pNe
c B=P,
FICURE 5
The similarity of the As P._,P.D and OAP, gives
Pr—lPr Pr—ID _ Pr—lPr
or, ~ oA “P-1D="5p -
Thus,
ppo P PR 8 b
T OP_OP, ~ 0OP? 1+AP?> 1+r%*
Since arc EG = EF = —3— L ure of circle is
ince arc =EF= 155 3 arc of circle is
T - )
T T o9

r=1

Of course, a clear idea of limits did not cxist at that time so that the relation was
understood in an intuitive sense only. To cvaluate the limit, Jyesthadeva uses two
lemmas. One is the geometrie series

1

TS T 2.3 ...
T+ l—x+x x°+ .
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Jyesthadeva says that the expansion is obtained on iterating the following procedure:

1 1 1
I+x=1_'Y(l+x)=1_x(l_'t(l+x))'

The other result is that

p+1

SM=1r+204 - 40~ FES!

for large n. (15)

A sketch of a proof is given by Jyesthadeva. He notes first that
S = S 4 §P D 4 §Ph 4 L gD, (16)

This is easy to verify. Relation (16) is also contained in the work of the tenth century
Arab mathematician Alhazen, who gives a geometrical proof in the Grecek tradition'®,
He uses it to evaluate § and S which occur in a problem about the volume of a
certain solid of revolution. Yuktibhasa shows that for p = 2,3

S(p)
c(p—1 (=1 (=1 L Zn
‘S(ll' )+ SZ’ ’+ +Su’—l ) P » (17)

and then suggests that by induction the result will be true for all values of p. Once
this is granted, it follows that if

S(/J— Do _n_li
n }’ ?
then by (16) and (17),
S(V) n,;+l
(=D gy 4 21 ({10 IR a—
nS, S+ » or S S

and (15) is inductively proved.
We now note that (14) can be rewritten, after expanding 1/(1 +r2562) into a
geometric series, as

n n n
%= lim [5}:1—53Zr2+55}:r4— ]

noel r=1 r=1 r=1
. 1 n z 1 n B

= lim 1——32r +-—5-Zr—-’-'
n— n o n -

i 1 1.

- 3 5 7 i

where we have used relation (15) and the fact that 8 = 1/n. Now consider the
approximation (12) and its application to the transformation of series. Suppose that

1 1 1 1 _
O’,,=l—§+-5—*-.—7'+"‘i'l;-f-f(n-f-l),

where f(n + 1) is a rational function of n which will make o, a better approximation
of /4 than the nth partial sum S,. Changing n to n — 2 we get

See The Historical Development of the Calculus (mentioned in footnote 1), p. 84. Alhazen is the
latinized form of the name 1bn Al-Haytham (c. 965-1039).
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s,

—l-—srtz—-F

q,

n=2

Lo
Ut —

Subtracting the sccond relation from the first,

iu"=a"—-0‘,,_2=i%;f(n+l)$f(n—l). (18)

Then

0'n=0n—-2iun
=a-n—4$uu~2j:un
= =0 —~uzgtus—u-+---tu,
=1-f(2) —us+us—u-+ - u,.

It is clecar that

and therefore
T
712 —uz+tus—u;+ - (19)

Thus, we have a new serics for /4 which depends on how the function f(n) is
chosen. Naturally, the aim is to choose f(n) in such a way that (19) is more rapidly
convergent than (1). This is the idea bchind the series (13). Now equation (18)
implics that

fi+ ) +f(n=1) =2 —u,. (20)

For (19) to be more rapidly convergent than (1), u, should be o(1/n), that is,
negligible compared to 1/n. It is reasonable to assume f(n + 1) =f(n— 1) =f(n).
These observations together with (20) imply that f(n) =1/2n is a possible rational
approximation in cquation (12). With this f(n), the value of u,, is given by (20) to be

S S S S
" n 2(n+1) 2(n-1) nw-n’

Substituting this in (19) gives us (13), which is

T 1 1 1 1
T=1-c+= - + = -
4 4 39-3 5'-5 737

The other serics
T 4 4 4
—_= — — - + —_— s e
4 1°+4-1 3°+4-3 5°+4-5

2
is obtained by taking f(n) = ':i n in (19).
n?

It should be mentioned that Newton was aware of the correction fi(n) =1/2n.
For in the letter to Oldenburg, referred to carlier, he says, By the series of Leibniz
also if half the term in the last place be added and some other like devices be
cmployed, the computation can be carricd to many figures.” However, he says
nothing about transforming the series by means of this correction.
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It appears that Nilakantha was aware of the impossibility of finding a finite serics of
rational numbers to represent . In the Aryabhatiya-bhasya he writes, “If the
diameter, measured using some unit of measure, were commensurable with that unit,
then the circumference would not likewise allow itself to be measured by means of
the same unit; so likewise in the case where the circumference is measurable by some
unit, then the diameter cannot be measured using the same unit.” "

The Yuktibhasa contains a proof of the arctan series also and it is obtained in
exactly the same way except that one rectifies only a part of the 1/8 circle.

It can be shown that if 7/4 =S5, + f(n), where S, is the nth partial sum, then
f(n) has the continued fraction representation

1[ 1 12 22 32
S =zl5vavnrar ) (21)

Morcover, the first three convergents are

(11/2)2 +1
(n?+5)n/2’

Al = o o) =222 and fy(n) =

n?+1

which are the values quoted in (13). Clearly, Nilakantha was using some procedure
which gave the successive convergents of the continued fraction (21) but the text
contains no suggestion that (20) was actually known to him. This continued fraction
implies that

2 2 22 32

-7~ itgvovey

which may be compared with the continued fraction of the scventeenth century
English mathematician, William Brouncker (1620-1684), who gave the result

4 12 32 52
FAab R E
The third approximation
(n/2)%+1
Fun) = /2 +1

(n2+5)n/2

is very cffective in obtaining good numerical values for 7 without much calculation.
For example

1 1
l—g+- _T§+f3(20)
gives the value of 7 correct up to eight decimal places.?® Nilakantha himself gives
104348 /33215 which is correct up to nine places. It is interesting that the Arab
mathematician Jamshid-al-Kasi, who also lived in the fifteenth century, had obtained
the same approximation by a different method.

¥See Geschichte der Mathematik, p. 169.

200gy . . . . . N . .
These observations concerning the continued fraction expansion of f(n) and its relation to the Indian

work and that of Brouncker, and concerning the decimal places in f (20), are due to D. T. Whiteside. Sce
“On Medicval Kerala Mathematics™ of footnote 13.
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5. Independence of these discoveries.

The question naturally arises of the possibility of mutual influence between or among
the discoverers of power series, in particular the series for the trigonometric func-
tions. Because of the lively trade relations between the Arabs and the west coast of
India over the centuries, it is generally accepted that mathematical ideas were also
exchanged. However, there is no evidence in any existing mathematical works of the
Arabs that they were aware of the concept of a power series. Therefore, we may grant
the Indians priority in the discovery of the series for sine, cosine and arctangent.
Moreover, historians of mathematics are in agreement that the European mathemati-
cians were unaware of the Indian discovery of infinite series.?! Thus, we may
conclude that Newton, Gregory and Leibniz made their discoveries independently of
the Indian work. In fact, it appears that yet another independent discovery of an
infinite series giving the value of m was made by the Japanese mathematician Takebe
Kenko (1664-1739) in 1722. His series is

2n+1 n!
4[1+ X 2(211-#(-2))'

This series was not obtained from the arctan series and its discussion is therefore not
included. However, the independent discovery of the infinite series by different
persons living in different environments and cultures gives us insight into the
character of mathematics as a universal discipline.

hanl

Acl led t. I owe t to Phil Straffin for encouraging me to write this paper and to the

referees for their suggestions.

21See “Patterns of Mathematical Thought in the later Seventeenth Century” of footnote 17. See also A.
Weil, “History of Mathematics: Why and How” in Collected Papers, Vol. 3 (New York: Springer-Verlag,
1979), p. 435.

#2Gee D. E. Smith and Y. Mikami, A History of Japanese Mathematics (Chicago: Open Court, 1914).
This series was also obtained by the French missionary Pierre Jartoux (1670~1720) in 1720. He worked in
China and was in correspondence with Leibniz, but the present opinion is that Takebe's discovery was
independent. Leonhard Euler (1707-1783) rediscovered the same series in 1737. A simple evaluation of it
can be given using Clausen’s formula for the square of a hypergeometric series.
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WILLIAM JONES

Tue First Use ofF » ror THE CIRCLE RaTIO
(Selections Made by David Eugene Smith from the Original Work.)

William Jones (1675-1749) was largely a self-made mathematician. He
had considerable genius and wrote on navigation and general mathematics.
He edited some of Newton's tracts. The two passages given below are taken
from the Synopsis Palmariorum Maitbeseos: or, a New Introduction to the
Matbematics, London, 1706. The work was intended “for the Vse of some
Friends, who had neither Leisure, Conveniency, nor, perhaps, Patience, to
search into so many different Authors, and turn over so many tedious volumes,
as is unavoidably required to make but a tolcrable Progress-in the Mathema-
tics.” It was a very ingenious compendium of mathematics as then known.
The symbol = first appears on page 243, and again on p. 263. The transcend-
ence of » was proved by Lindemann in 1882. For the transcendence of e,
which proved earlier (1873), see page 99.

Taking a as an arc of 30° aud ¢ as a tangent in a figurc given, he states
(p. 243):

6a,0r6 Xt — %t'-’-{-—sli“, &c. = ; Periphery (). ..
Let
a=2'\/§.ﬁ—-%‘a.'¥_;ﬁ.5—;'¥.&c
Then
1 1 1 1 1
d—'3‘ +—5-’Y—75+9€,&C —2~7r,
or
13, la 13ax,1a 1 3« 1 &
“T39Fs5 g Tem T mw T &

Theref. the (Radius is to ¥4 Periphery, or) Diameter is to the
Periphery, as 1,000, &c to 3.141592653 . 5897932384 . 6264338327 .
9502884197 . 1693993751 . 0582097494 . 4592307816 . 4062862089 .
9862803482 . 5342117067. o+ True to above a 100 Places; as
Computed by the accurate and Ready Pen of the Truly Ingenious
Mr. Jobn Machin.

On p. 263 he states:

There are various other ways of finding the Lengths, or Areas

of particular Curve Lines, or Planes, which may very much facili-
346
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tate the Practice; as for Instance, in the Circle, the Diameter is to
Circumference as 1 to

16 4 116 4

11
T3 T35 T30 T

-
739 7

1

i O\

&e. =
3.14159, &c. = ~. ..

Whence in the Circle, any one of these three, «, ¢, d, being given,

1
the other two are found, as, d =c+ 7 = a + ;{;r"", c=dXmr

'=a)(44r”,a=‘-lfrd2=c2—:-41r.
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Arca bdDB=1X*—1X~— _(;i_

ik |5 +

() X

—_zX, & — 16t xx e —

e, .
9 _
Qe-‘— 27¢}
— 2=, .
45¢5 .

Bue this Hyperbolick term for the mofl part
may be very commodioufly avoiicd, by altering
the beginning of the Abfcifs; that isy by increafing

or diminifhing it by fome given quantity.  Asin
al—a*x .
the former Example, where = was the e-

quation to the Curve ;. lfl would gukc b to be thc.
beginning of the Ablcils, fuppofing A to be of
any determinate length, viz. .-iﬂ"mr lhc. remainder
of the Abfcits 4B, I fhall now write x: fo that, if [
diminifh the Abfcifs by 1a, by Wl;l[ing x--ta in-
jat—a’x

flead of w, it will become s==———=x;
3

—j2andat

and

. MY 28 2002, H
by divifion z=}a—"x-|- e &e. whencearifes

200x1
. 4.2 ST E2, -
z=tax—"}a"t -y, Geo = bdDB.

. al—g’x o .
Alfo the cquation —~-—=z=z might have Leen

ax—t-ix
. - . . . * al a«t
refolvedinto the T'wo infinite ferics, z=z ;i — 75+
as xx x3 .
et &e. —afx—-, ~- =, & where there is

found no term divided by the firft power of x,

But fuch kind of feries, where the powers of »
afcend infinitely in the numerators of one, and in
the denominators of the other, are not lo proper
to derive the value of z from by Arithmetical Com-
putation, when the fpecics are to be changed into
Numbers.

Scarce

100

The Mathematical Works of lsaac Newton

and INFINITE SERIES. 129

Scarce any difficulty can occur to any one, who

is to undertake fuch a computation in Numbers,
after the value of the Area is obtained in fpecies.

Yet for the more compheat illuftration of the fore-
going doétrine, I fhall add an Example or Two.
Let the Hyperbola AD be propofed, whofe e-
quation i8 /xFxx=2, its vertex being at A, and
each of its Axes cqual to unity ; from whatgoes

. 3 s KA 2.
before, its Area ADB=zja®fda™— et b x?
RN 4.
—yie¥ b, e, thatis, x* into lx-dx*— Lx?
=+ txt— 2 x%, e, which feries may be infinite-
ly produced by multiply-

ing the laft termcontinual-
ly by the fucceeding terms

of this progreffion, -'zi 2

1S, T37, —S59
—2X 2y T

4.7 6.9 * AT
—7.11

———x, &¢c. thatis, the
10:13

] . e 1.3
firlt term jx* multiplied by -z—;-x, makes the fe-
cond term 4x* ; which multiplied by ::,l—fx:mﬂkcs

x+ 5 which multiplied by :6-_352’

And fo on ad

-1
28
makes the fourth cerm - 1, x .
infinitum.

Now let AB be affumed of any length, fuppofe
4, and writing this number for x, and its root &

the third term

J. k3 -
for x*, the firlt term 3x¥ or 4 x 4 being re-

duced to adecimal fraction, becomes0.083333333,
{Je. this into _2-1-5-17 makes o . 00625 the fecond

. -—1.
term; thisinto — 2 makes o. 0002790178,

€. the third term, . And fo on for ever, But
the

¢ Volume I
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the terms thus reduced by degrees, 1 difpofe into
T'wo Tables ; the affirmative terms in One, and the
Negative in Another, and add them up as you
fee here.

=+ 0. 0813333333333333 | —o . 0002790178571429
72 500000100000 3467906605 1
271267361011 ‘834465027
5135169396 26295354
144628917 961200
4954581 38676
190048 1663
7903 75
352 4

16 .
' 0 . 000282571938957¢
-+ 0. 0896109885646618

0. 0896109885646618

0. 0893284106257043

Then from the fum of the affirmutive, I take the
fum of the negative terms, and there remains
0.0893284166257043 for the quantity of the
Hyperbolick Area AdB which was to be found.

Let the Circle AdIF [ Sce the fame Fig. ] be
propofed, which is exprefled by the: cquation
Vi—xx=:z, whole dianicter is unity; and from
what gocs before its Area AdB will be -}x‘“-;x;'

Q.

— % r— " x %, e in which feries, fince the terms
do not difler from the terms of the feries which
above exprefled the Hyperbolick Area, except in
the figns -J- and —; nothing elle remains to be
done, than to connc&t the tame numeral terms
with their figns; that is, by fubtra@ing the con-
nected fums of both the forementioned Tubles,
©.0%9%935005036193, from the fiefl term doubled
0. 16066666GLLO6GG6, (Fe, and the remainder
0.0767731001630473 will be the portion AdB
of the Circular Area, fuppufing AB o be a fourth

part
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part of the Diameter. And hence we may ob-
ferve, that though the Areas of the Circle and
Hyperbola are not exprefledin a Geometrical conf(i-
deration, yet each of them is difcovered by the
fame Arithmetical computation,

The portion of the Circle AdB being found, from
thence the whole Area may be derived. For the ra-
dius dC being drawn, multiply Bd or 4,/3 into BC
or !, and one half of the produtt 13, or
0.0541265877365275 will be the value of the
Triangle CdB ¢ which added to the Area A4B,
will give the Se@tor ACd, 0. 13089969389957473
the Sextuple of which 0.7853981033974482
is the whole Area. )

And hence (by the way) the length of the Cir-
cumference will be 3.1415926535897928, which
is found by dividing the Area by a fourth part of
the diamcter.

To this we fhall add the calculation of the Area
compr:hended between the Hyperbola dIFD and its
Afymptote CA, lec C
be the center of the Hy-
perbola, and  putting
CA=a, AF==b, and
AB=:Ab:—x; it will be

ab ab Y
‘-14_--"7'7 BD, and ;—: ' ‘l)
~bd ; whence the Area . 7
. o bxx | bxs H 2 Q
Al'DB - 1/:'.—-;: @ | i l —
___ f:\_‘j, G, And the U 4N AP
e : bxr x3  bxs
Area AFdv=Dbx - —— - T +;‘-’,{j¢. Andthe
. 1] b b
fum blzonxsz+35;",’-+-’s-:;‘+%, €. Now

let us fuppofe CA=AF=1, and Abor AB;TQT,
Cb being =0.9, and CB=1.1. then fubflitut-
S ing
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CHAPTER X

On the Use of the Discovered Factors to Sum Infinite Series.

165. If 1 + Az + Bs* + C2° + Dz* +
= (1 + az)(1 + Bz)(1 + yz)(1 + 8z) - - - , then these factors, whether they
be finite or infinite in number, must produce the expression
1+ Az + Bz + C22+ Dz* + -+, when they are actually multiplied. It
follows then that the coefficient A is equal to the sum
a+B+vy+8+e+ --- . The coefficient B is equal to the sum of the pro-
ducts taken two at a time. Hence

B

af + ay + ad + By + 83 + yd + - - . Also the coefficient C is equal
to the sum of products taken three at a time, namely

C

a3y + agd + Byd + ayd + -+ . We also have D as the sum of pro-
ducts taken four at a time, and E is the sum of products taken five at a time,
etc. All of this is clear from ordinary algebra.

166. Since thesuma + 3 + vy + 8 + - - is given along with the sum of
products taken two at a time, we can find the sum of the squares
o + B2+ 42 + 8% + - - -, since this is equal to the square of the sum dimin-
ished by two times the sum of the products taken two at a time. In a similar
way the sums of the cubes, biquadratics, and higher powers can be found. If we

letP=a+B+y+8+e+

112



Q=0+ +y1 +8%7+ e+
R=a®+p3+y+8°+&+
S=oa'+pt+yt+ 3+t +
T=a"+p+4"+8°+&+
V=ab+p%+°+3%+ e+
T

Then P, Q,R,S,T,V, etc. can be found in the following way from

A,B,C,D, ete. P =4, Q = AP - 2B, R = AQ — BP + 3C,
S =AR - BQ + CP — 4D, T =AS — BR + CQ — DP + 5E,
V=AT — BS + CR — DQ + EP — 6F, etc. The truth of these formulas is

intuitively clear, but a rigorous proof will be given in the differential calculus.

167. Since we found above, in section 156, that

z e~ ? 2 4 6
gl e ——— ¢ E— ..
1-2:3 1-2:3:4°5 1227

gl B Bl )

it follows that

2 4 [}
T z Iz
+

+ +
123 12345  12-7

22 22 22 22
1+ =1+ =S|+ =1+ cee
w? 4’ 9 167*

If we let z% = =z,

1+

It
——

11.2 11’4 2 _n_b 3

z + 2" + z
1-2-3 1-2:3:4-5 1-2:3:4:5-6-7
= (1 + 2)(1 + z/4)(1 + 2/9)(1 + 2/16)(1 + 2/25) - - -
2 4 8

We use the rules stated above where A = Eé" B = —1?0-, C = -5—0—46,

8
362880

D = , etc., and we also have

p=1+Lt+Lt s L Ly Ly
4 9 16 25 36
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1 1 1 1 1
=1+ =+ =+ — + + + ,
@ 4% 9 162 252 362
1 1 1 1 1
R=14+ -+ <+ —+ ——+ —<+ -
£ ¢ 16® 25 36° !

S=l+_+_+.l_+_}__+_1__+ s,

1 1 1 1 1
T =14+ — + —— + —— + — +
4% 9% 16 25 36°
From the values of A, B, C, D hat P = . R
rom the values of A, B, C, D, etc. we see tha = , @ 00’ R = a5
8 _al®

= T = , ete.
9450 93555

168. It is clear that any infinite series of the form
1+ — + — + — + - -- | provided n is an even integer, can be expressed
in terms of 1, since it always has a sum equal to a fractional part of a power of

7. In order that the values of these sums can be seen even more clearly, we set

down in a convenient form some more sums of these series.

1+_2!2_+_12_+_41_2+$+ =1.22°.3 %"2
1+—217+3_‘+4L‘+5L =1-2-232-45§'"4
B T
1+21—s+-;—8+4i8+—513-+ =?T"’3°n—_9-—§-n‘
1+—21"7+§%0-+417+g}—0+ ='1'_2-%1_1'%“w
1+5}7+#+ﬁ+5%+ =1-2-231-0--13%”
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1+2—1“—+3—1“-+;1—4+g%+---=%%§;5-ﬂ“
1+;};+#+%;+;11;+---=-1.—2_—2;—.17-%;—7-’°
1+Et—o+-gi—o-+:12—o—+-5%-+ s o= 1.2‘231_8__21 1225252771r’°
1+?§7+317+ Z_%’Lﬁﬂk T 1-2-232-0--23 8543513'"22
1+2_1‘_+_3_127+fﬂﬁL?lﬂJr . 1.2.2:”25 1181287230455“_“
1+;12_°_+§%°_ ;%*;T‘” = 1-2.2;.‘"27 769717927",,_

We could continue with more of these, but we have gone far enough to see a
sequence which at first seems quite irregular, 1,—~, —, —, —, 707
but it is of extraordinary usefulness in several places.

169. We now treat in the same manner the equation found in section 157.

There we saw that

z -z 2 4 6
e_i._e_ =1+ L. + z + z +
2 1-2 1:2:3:4 1:2:3:4-5'6
2 2 2 2 2
=1+:1z_ 1+ﬂ-— l+—:‘z—- 1+-—4£—2"'.Weletz2=r—-z-,
w? 9m? 2572 497 4
2 4 [}
then 1 + ——z + L z22+ L 3z3
1-2:4 1-2:344 1-2--6°4
= (1 + z)(1 + 2/9)(1 + 2/25)(1 + 2/49) - -+ . We now use the formulas,
2 4 )
17 _ s _ T
where A = TYL B = 12344 C = 123648 etc., and
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1 1 1
P=1+—+—+ — + — +
1 25 49 81
1 1 1
=1+ + ==+ =+ — +
Q 25 49 81
1 1 1 1
R=1+4—=+ — + — + —
9® 25 49  81°
1 1 1 1
S=14—+ —+ — +— +
9t 25 49 g1
1 =t 2 _ 16 =
It follows that P = 1 ;3-, Q= 'i—z-—s —2?, R = m -2—.,-,
g = 212 = oo 7936 @b v = 353792 m!?

1:2:3¢7 29’ 1-2-3---9 oll ’ 1-2:3-+11 213’

W = 22368256 mlt
1-2:3--13 215 *

170. The same sums of powers of odd numbers can be found from the
preceding sums in  which all numbers occur. If we let
M—1+~L+—L+L+—-1-+'°-andmultilbothsidesb-l-we

- 2" 3" 4" 5" il PTN
obtain M_ L + L + L + L + - ++ . This series contains only even
2" 2" 4" 6" 8"

numbers, which, when subtracted from the previous series, leaves the series with

only odd numbers. Hence,

M 2" -1 1 1 1 1 .
M-;;‘—=__2—"_M=1+3_"+;’_+F+9_"+ cec . If 2 times

the series -2—{- is subtracted from M an alternating series is produced:

oM _ 2"t -1 1 1 1 1 1
M-ET—-?_—I——M—I—-2—"-+§;'—F+-ST—F+ c++ . In

this way we can sum the series
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1+ —+ — + — + —
3" 5" ™ 9" 1"

If n is an even number and the sum is Aw", then A will be a rational number.

171. Furthermore, the expressions found in section 164 supply in the same

way sums of series which are worthy of note. Since

v g . v v v v
— 4+ — = |1 + 1 — 1+ ——F] - -
cos2 an251n2 [ - g][ +g)[ 3 g) ,

if welet v = =1 and g = ﬂ’ﬂ', then
n n
1+ —2—1h-——[1+ == 1 - —= 1+ —=
n—m n+m 3n — m 3n + m S5n — m
z zT mw . I
{- ——|+++ = cos — + tan — —_—
[ 5n + m] ¢ 2n 2 2n sin 2n
2.2 3.3
=1+ T2 gan o8 - T - TE gy, BT
2n 2n 2:4n 2:4:6n3 2n
it
2-4:6:8n*
_ .2
Using the expression in section 165, we have A = I tan M, B = 172 ,
2n 2:4n
3 4 5
- m -n T mar
= ————— tan —— = —— E = tan etc.
2:4-6n° 2n ' 2:4:6-8nt’ 2:4:6-8:10n° 2n’
" . _ 1 _ 1 _ 1
Further, since a = P— B pr— Y F—
1 1 1
S§= - = = - -, te.
3n+m’e 5n—m’C 5n + m ete

172. When we follow the procedure given in section 166, we obtain the fol-

lowing.
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When we let tan

T =

143

1 1 1 1
T n-m n+m 3n —m  3n + m
S U
Sn — m 5n + m
1 1 1
Q (n = m)? (n + m)? * (3n — m)?
1 1 +
(3n + m)? (5n — m)?
1 1 1
k= (n — m)® - (n + m)? * (3n — m)®
(3n + m)® (57 — m)®
o1 L, 1
(n — m)! (n + m)? (3n — m)*
1 1 +
(3n + m)! (50 — m)!
_ 1 _ 1 N 1
(n = m)® (n + m)® (3n — m)®
(3n + m)® (5n — m)®
v 1 + 1 + 1
(n — m)® (n + m)® (3n — m)®
1 1 +
(3n + m)® (5n — m)®
2: = k, we obtain, as we have shown,
kw 1 kw
A= =2 n

_ (B + nw? (267 + 2)u?

4n? 2-4n?

_ (B + k)m® _ (6k° + 6k)n®

8n? 2:4-6n3

_ (Bk* + 4k® + 1wt _ (24k* + 32k + 8)urt

48n!

2-4-6-8nt

(3k° + 5k + 2k)n® _ (120" + 200k® + 80k)m®

96n°
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173. Likewise from the last form in section 164, we obtain

v v v v
=1+ —=-Ijt-—1INnNn+ —
2 2 [ g][ Zw—g][ 2'n'+g]

cos-§+ cot L sin
1_.._._”_. 1+_L_ “« ..
T — ¢ 4 + ¢

If welet v = —Ew, g = -'11—17, and tan &L = k, so that cot g1 and
n n 2 k
cos 2= 4 1 sin 0= = J w’s’ - st 'zt
2n  k 2n 2nk  2:4n?  246n%  2-4-6-8nt
56
+ —22 o= h+E e —= 1+ —=
2:4-6-8:10n%k m 2n — m 2n + m

z z
— — +——-—-.. .
[1 tln--m][1 4n+m]

When we compare this with the general formula given in section 165, we find

S S 1 5
A= -—-n.—-, B = Tl'2 , C = ‘“3 , = m T = ) g
2nk 2:4n 2:4:6n°k 2:4-6:8n 2:4:6-8-10n"k
etc. From the factors we obtain a = —1—, B = -1 , Y= 1 ,
m 2n —m 2n + m
-1 1

= ———, e = —, etc.
4dn — m 4n + m

174. Again we follow the procedure given in section 166 in order to obtain

the sums of the following series.

P=L— 1 1 _ 1 + 1 _
m 2n —m 2n + m 4n — m 4n + m
1 1 1
= — + +
Q m? (2n — m)? (2n + m)?
1 1

(4n - m)? (4n + m)?
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R L _ 1 1
m3 (2n — m)? (2n + m)®
(4n — m)? (4n + m)?
1 1 1 1
§=—+
m* (2n — m)* (2n + m) (4n — m)*
1
(4n + m)!
T = _l_s' - . gt : 5 : 5
m (2n — m) (2n + m) (4n — m)
1
(4n + m)®
We obtain the following sums:
_ R S .
P=4 2nk 2nk
Q= (k? + 1)w? -2+ 2k%)n?
4n%k? 2-4n2k?
_ B+ nn _ (6 + 6kHn?
8n3k3 2-4-6n3k3
g = K1+ 4k’ + 3)ymt _ (24 + 32k? + 3kY)w!
48n'k* 24-6-8n'k*
r = (260 + 5K + 3)w® _ (120 + 200k% + 80k*)rm®
96n°k* 2-4-6-8:10n°k"
V= (2k® + 17k* + 30k% + 15)7®
960n°k°

_ (720 + 1440k? + 816k* + 96k%)m®
2:4:6:8:10°12n°%®

175. These general series deserve to be particularized by giving special

values to m and n. If m = 1 and n = 2, then k£ = tan -f— = 1, and both of

the series become the same:

w 1,1 1,1
L e T SRR L
4 3 5 7 9
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1'8—=1+%+51—2+71—2+;12—+
R
%=1+31;+.51,.+;_,+;_0+

The first of these series was seen before in section 140. The other series, which
have equal exponents were discussed in section 169. The remaining series, in
which the exponents are odd, we see here for the first time. It is clear that each

of these series

1 1 1 1

1~--32'l+l +52”+l —72“+l +92n+l — +++ has a sum which is

some function of .
176. Now we let m = 1, n = 3, then k = tan % = —\}; and the series in

section 172 become

w 1 1 1 1 1 1
== - =4+ = - — = - =+
6V3 2 4 8 10 14 16
2
T 1 1 1 1 1
— ==+ =+ S5+ =+ — + — +
27 22 = 42 g? 10? 142 162
3
'n' 1 1 1 1 1 1
= - — = —— o —— — —
162V3 23 43 83 10° 143 163
etc., or
T 1 1 1 1 1
=l-—4+—-—- =+ = - =+
3V3 2 4 5 7 8
2
LR I S e N T
27 2 42 52 7 8
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In these series there is no term which is divisible by —;— We can find the series

which contain these terms, at least those series with even exponents, as follows.

Since

o:'ﬂ
[}
[y
+
|
+
|
+
|
+
|
+

it follows that

2
4,1, 1,1, =
54

LI L -

69 32 6* 92 12?
This last series contains only those terms which are divisible by %—, and if it is
subtracted fromn the previous series, there remains a series which contains all
terms not divisible by % Then

8n dmw 1+ L + L + L + + -+ -+ , as we have already seen.

7

177. With the same hypothesis, that is, m = 1, n = 3 and k = -71;, from

section 174 we obtain

7 1 1 1 1 1 1
=1- =+ = - =+ — - — + — -
2V3 5 7 11 13 17 19
2
™ 1 1 1 1 1 1
— =1+ 5+ S+ + =+ —+ — +
9 52 72 112 132 172 192
3
w 1 1 LSRR W T S

18V3 LA SRS § E S & SO U AT T
In these series, the denominators are all odd numbers, and the terms divisible by

1 .. _
— are missing. The sum of the even powers of these missing terms can be found

from what we already know. Since
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2 1 1 1 1

™ .
T=1+?+§2—+_7_’+_97+ ++ , it follows that

2 2

u 1 1 1 1 ki . . . .
0 ?- + -5; + E{ + -2-1-2- + e o= TR If this series, which contains

all the terms with odd denominators divisible by three, is subtracted from the®
series above it, there remains the series of squares of odd numbers not divisible

by three, so that

2
™ 1 1 1
—_— =]t —t — o — t — 4
9 52 72 112 132

178. If the series found in sections 172 and 174 are either added or sub-

tracted, we obtain other series which are worthy of note. We have

ko ow _t 1 1 . _ 1
2n 2nk m n—m n+m 2n — m 2n + m
_ (4 )w
2nk )
mir
" on 1
If we let k = tan == = , then 1+ k%= —————3, so that
2n m ma
cos 9 cos—
n 2n
2k = 2sin =X cos 2L = sin . When we substitute these values,
1+ k? 2n 2n
we obtain
s S U S SN 1
. m n—-—m n+m 2n - m 2n + m
n sin —
1 1 - . .
- — +++ . In a similar way, by subtraction, we obtain
3n — m 3n + m
2
o _kw (- k)w 1 1 1 1
2nk 2n 2nk m n—m n+m 2n — m
1 1 L M welet
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ok 9 sin
= BT = tan 2T = 1 , then
1 - k? 2n
cos
T cos
-1 _ 1 + 1 _ 1
..ommw m n—m n+m 2n — m
n sin ——
n
1 1 . . .
- + -+ . Series with squares and higher powers

2n + m 3n — m

which arise in this way are more easily derived through differentiation, which we
will do later.

179. Since we have already considered the results when m = 1 and n = 2,

or 3, we now let m = 1 and n = 4. In this casesinﬂ-=sinl=vlrand
n 4 2
cos = = L It follows that
1 Vi
T 1 1 1 1 1 1 1
=1+ —--=-= + =+ —--——-—=—+ --- and
aVa 3 5 79 11 13 15 an
™ 1 1 1 1 1 1 1
I i e it S et SCILITI =
4 35 79 11 13 15 fm =1 and
1 1
=8, th maw _ o m _ 1 _ 1 2’ 1=_+1
n 8 en n 8,s|n8 2 ;72- c058 2 Va ,
v
cos-—8—
and - =1+ \/2_ From these we have
sm?
m o, ,l_1_ 1,1 .1 _
.;_ 7 9 15 17 23
4(—\/5]
T 1 1 1 1 1
=l--+ - - —+ = - =+
8(\/5-1] 7 9 15 17 23
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i cosﬁ’_
3m 1 1 )z 8 _ 1
cos rala [2 —275-] , and s;n_s_i Vs 1 It follows that
8
m 1,1 _ 1 _ 1.1 .1
-;. 3 11 13 19 21
a2 + Ve
w _1_ 1,1 _ 1 .1 _ 1,

112+\/§
( ) Sqely 1111111
4 7 11 13 15 17
+ Loy
19
1
- Va|?
v
[ ) =1_.1___1_+.1__l+_1_+_1__.l_+_1_
4 3 5 7 9 11 13 15 17
S S
19
1
-u[(4+2\/§]’+\/§—1] L1111
=14+ ===+ =—- =+ —
8 3 5 7 9 11
S SN SRS SR S
13 15 17 19
1
11[(4+2\/5]2—\/§+1] i 1 1
=1—- =4 =+ = - = - —
3 11
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_elyl_ 1,1 1
35 7 9 11
11,1, 1,
13 15 17 19
1
n[\/§+1—(4—2\/§)’] L1
=1-=-=- == —
8 5 7 11

L_ 1,1 _ 1
13 15 17 19

In the same way we could let n = 16 and m = 1,3,5, or 7 which would show

, * -+ and in which the

!Dlv-

the sums of series in which the terms are l,-}}-, —;—, ';-,

various changes of positive and negative signs are diflerent from those already

seen.

181. If in the series discussed in section 178, the terms are combined two by

two, we obtain the following:

T 1 2m 2m 2m
mar =—r;+ n? — m? - 4n? — m? * 9n? — m?
n sin ——
n
16n° — m
From this it follows that
1 _ 1 1 . = L __1
n? — m? 4n% — m? 9n? — m? 2mn sin 2m?
The other series gives us
T 1 2m _ 2m _ 2m _
mr m n? - m? 4n? - m? 9n? — m?

n tan ——
n

From this we have
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1 1 1 1
nz—m2+4nz—m2+9n2—mz+”.=2m’— Trm'rr
2mn tan

When these two series are added, we obtain

a tan 2
1 1 1 2n
2 ) + 2 2 + 2 2 + « .. = ——
n°—m In® —m 25n° — m 4mn

If we let n =1 and let m be any even number 2k except zero, since

tan kw = 0, we always have

1 1 1 + 1

-+ > + 2 3 = 0. However, if in
1 — 4k 9 — 4k 25 — 4k 49 — 4k

this series n = 2 and m is any odd number 2k + 1,

since —1 = 0, we have

tan ——

1 + ! + 1 o = —1
4- (2 + 1) 16 - (2k + 1) 36 - (2k + 1) 2(2k + 1)?

182. If we multiply the series by n? and let —':- = p,

then they take the form

1t v 1w 1
1 - p? 4 - p? 9 - p? 16 — p? 2p sin pw 2p?’
1,1 v 1 _1_ =
1-p? 4-p* 9-p* 16-p? p?  2psinpw’

If we let p? = a, then we obtain the series

r ot .t 1 __wVa 1
l1-a 4-a 9-a 16-a %24 sin nVa 20’

.\/'—
1,1 .1 1 1 aVa

1-a 4—-a 9—-a 16~ a 2a 2atan1r;a.

Provided a is not negative nor the square of an integer, then the sum of these

series can be represented in terms of the circle.
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183. By means of the reduction of complex exponentials to sines and cosines

of circular arcs, which has been treated, we can assign negative values to a in the

series just discussed. Since e* = cos z + ¢ sin z and e ™ = cosz — isinz,
. . . . eV + eV
when we substitute yi for z, we obtain cosyi — 1 = —5—— and
~V _ LY
sin yi = -e?-——2—,—-c—. Now if a=—b and y = 'n'\/z, then
H

"1!’\/; ‘H'\/; —'rr\/; ‘lf\/b-
N + N -
cos -b = £ e and sin = -b = £_~__C___.

2 21
It follows that
— _ Vb
tan wY — b = ¢ — . Then we have
[c""” + e“\/;)i
wVvY — b - — 211’\/; and
sinwV - b e~ TVh _ omVh

,"\/T; _ (e_"vz + e"\/;]-n'\/;

won o — b = c'"ﬁ ~ Vb . From these remarks it follows that
1t 1 1

1+ 4+ 9+ 16 + b

-1 _ w\/l;
26 (e,,v'i _ c_"\"]b,
1 1 1 1

+ + +
T+6 "1+ T 9+6 16+ 6

(e"vz + c""\T]'n'\/;
— — ——. These same series can be derived from sec-
2b [c"\,i - c"'w’) 25

tion 162, using the same method which was used in this chapter. However, I
have preferred to treat it in this way, since it is a nice illustration of the reduc-

tion of sines and cosines of complex arcs to real exponentials.
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MEMOIRE

S UR

QUELQUES PROPRIETES REMARQUABLES DES
Q_UA.NTIT}'-JS TRANSCENDENTES CIRCULAIRES
ET LOGARITHMIQUES.

paR M. LAMIBERT. %

§. 1.

Démontrer que le diametre du cercle n’eft point 4 fa circonférence
comme un nombre entier 3 un nombre entier, c’eft 1 une cho-
fe, dont les géometres ne feront gueres furpris.  On connoit les
nombres de Ludolph, les rapports trouvés par Archimede, par Metius
cte.  de méme qu'un grand nombre de (uites infinies, qui toutes fe
rapportent i la quadrature du cercle. Et fi la fomme de ces fuites eft
une quantité rationelle,, on doit aflez naturcllement conclure, qu’elle
fera ou un nombre entier, ou une fraction trés fimple. Car, s'il y fal-
loit une fraétion fort compofée, quelle raifon y auroic-il, pourquoi
plutdr telle que relle autre quelconque? Clelt ainfi, par exemple, que
la fomme de la fuite
~ ” ~ 2
—_—t — 4= — = + &
7 I. 3 3. § 5. 7 7-9
elt égale 3 l'unité, qui de toutes les quantités rationelles eft la plus
fimple. Mais, cn omettant alternativemient les 2, 4, 6, 8 &c. termes,
la fomme des autres
2
") Lu en 1767. 1.3
Mem. de [ dcad. Tom, XVIL Ll
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1 —+ ! - &ec.
1. 3 5.7 9. 11 13. 15§

donne laire du cercle, lorsque le diametre eft —= 1. Il femble done
que, i cette fomme éroit rationelle, elle devroit également pouvoir
étre exprimée par une fraétion fort fimple, relle que feroir § ou $ &e.
En effer, le diametre étant — 1, le rayon —= 3§, le quarré du rayon
— }, on voit bien que ces exprellions étant aufi funples, eclles n’y
mettent point d’obftacle.  Et comme il s’agit de tout le cercle, qui
fait une efpece d’'unité, & non de quelque Scéteur, qui de fa nature
demanderoit des fra&tions fort grandes, on voit bien, gu’encore i cet
érard on n’a point fujer de s’attendre 4 une fraCtion fort compofe.
Mais comme, aprés la fraltion {4 trouvée par Archimede, qui ne don-
ne qu'un d peu prés, on palle i celle de Aetius, 3§ 4, qui n’eft pas non
plus exalte, & doiit les nombres font confidérablement plus grands, on
doit érre fort porté a conclure, que la fomme de cette {uite, bien loin
d'étre égale & une frattion fimple, elt une quaanticé irrationelle.

§. 2. Quelque vague que foit ce raifonnement, il y'a néan-

moins des cas ol on ne demande pas d’avantage.  Mais ces cas ne
fonr pas celui de la quadrature du cercle.  La plapart de ceux qui s'at-
tachent 4 la chercher, le font avec une ardeur, qui les entraine quel-
que fois julqu’i révoquer en doute les vérités les plus fondamentales
& les mieux érablies de la géomérrie.  Pourroit-on croire, qu'ils fe
trouveroient fatisfairs par ce que je viens de dire? Il y faut toute au-
tre chole.  Er s’agit-il de démontrer, qu’en effet le diametre n'eft
pas 4 la circonférence comme un nombre entier & un nombre entier,
cette démonftrdrion doit €ire fi rigide, qu'elie ne le cede & aucune
démonftration géoméirique. Eravec tour cela je reviens a dire, que
les géomértres n’en feront point furpris.  Ils doivent étre accourumés
depuis longtems 4 ne s'attendre & autre chofe.  Mais voici ce qui
méritera p us d’attention, & ce qui fera une bonne partie de ce Mé-
moire, [l s’agit de faire voir, que toutes les fois gu’un arc de cercle
qgueleongue eft commenfurable au rayon, la tangente de cet arc lui ef? in-
coms-
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commenfurable; & que réciproquement, toute tangente commenfirable
w'eft point celle d’un arc commenfurable.  Voila de quoi &rre un peu
plus furpris.  Get énoncé paroiffoit devoir admettre une infinité d’ex-
ceptions, & il n’en admet aucune. 1l fait-encore voir jufqu’a quel
point les quantités circulaires tran{cendentes font tranfcendentes, &
reculées au deld de toute commenfurabilité. Comme la démonftration
que je vais donner exige toute la rigueur géomérrique, & qu’en ou-
tre elle fera un tiffu de quelques autres theorémes, qui demandent d'8-
tre démontrés avec tout autant de rigueur, ces raifons m’excuferont;
quand je ne me birerai pas d’en venir 4 la.fin, ou lorsque chemin fai-
fant je m'arréterai 4 ce qui (e préfentera de remarquable.

§. 3. Soit donc propo(é un arc de cercle quelcongue, muis
commenfurable au rayon: & ils’agitdetrouver, ficet arc de cercle fera
en méme tems commenfurable d fa tangente on non? Qu'on fe figure
pour cet effet une fraltion telle, que fon numérateur {oit-égal & I'are
decercle propof, & que {on dénominateur (oir égal 2 la tangente de cet
arc. Il eft clair que, de quelque maniere que cer arc & fa tangente foient ex-
primés, cette fraction doit érre égale 4 unc autre fraction, dontle numé-
rateur & le dénominateur {¢ront des nombres entiers, toutes les fois
que I'arc de cercle propofé (¢ trouvera érre commen(urable & fa tan-
gente. Il eft clair aufli que cette feconde fraltion doit pouvoir &tre
déduite de la premiere, par la méme méthode, dont on fe fért en
arithmétique pour réduire une fraltion 3 fon moindre dénominareur.
Cetre méchode érant connue depuis Euclide, qui en fait la 2me prop.
de fon 7me Livre, jec ne m’arrérerai pas i la démontrer de nouveau.
Mais il convient de remarquer que, rtandis que Ewc/ide ne 'applique
qu'i des nombres entiers & rationels, il faudra que je m’en ferve d'une
autre fagon, lorsqu’il.s’agit d’en faire I'application a ces quantités, dont
on ignore encore fi elles feront rationelles ou non? Voicidonc le pro-
cédé qui conviendra au cas dont il eft ici queftion.

§. 4. Soit le rayon — r, un arc de cercle propof& quelcons
que — v. Et on aura les deux: (uites infinies fort connues
L2 fin
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—y— -1 S — 7} &
fny=v 2.3 v +:.3.4.5 2.3.4.5.6.7 T
Y . S + &e.

2. 3. 4 2.3.4.5. 6

Comme dans ce qui fuivra je donnerai deux fuites pour I'hyperbole qui
ne différeront de ces deux qu’en ce que tous les fignes fonr pofitifs, je
différerai jusques-la de démontrer la loi de-progrellion de ces fuites, &
encore ne la démontrerai- je que pour ne rien omettre de tout ce que
demande la rigueur géométrique. Il fuffit donc d’en avoir averti les

D
Ledéteurs d’avance.

1
cofv—1——v? +
2

§. 5. Or commeil eft

tang v == fin o
8 Y — Cofv’
nous aurons, en fubftituant’ces deux fuites, la fraltion
1 {
v — —v3 4 v &e.
. 2.3 2.3.4.5§
tang v T g I
1 — Fuv? - vt &e.
2. 3. 4

Je la poferai pour plus de briéveté

taﬂg v T "E,
de forte qu'il foit
A — fin v,
B — cof v
Voici maintenant le procédé que prefcrit Euclide,

§.6. Ondivile B par A; foit le quotient — Q/, le réfidu — R”.
On divife A par R/; foit le quotient == Q¥ le réfidu — RY.
On divife R’ par R”; foit le quotient = Q¥, le réfidu — R/,
On divife R” par R”/; (oit le quotient == Q’%, le réfidu — R'”, &e.

de
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de forte qu'en continvanr ces divifions, on trouve {Sccefliveent

lesquotiensQ/,Q/, Q" - - - - - - . Q% (ﬁ"{'"Q"‘*"- - &e.
les réfidus R/, R/, R « . . . . .. R R R P &e

& i} eft clair fans que jen avertiffe, que les expolins 7, » 41, # 4 2 &ec.
ne {ervent qua indiquer le quantieme quotient ou réfidu eft celui ol
ils {e trouvent marqués.  Ce qui érant pofé, voici ce qu'il s’agit de
démontrer.

§. 7. En premier lieu, non feulement gue la divifion peut étre

continute fans fin, mais que les quotiens fuivront une loi trés fimple en
ce qu'il fera

Q =4 1:¢

Q' = —3:9

JQI”:"*“'S:”,

QY —m — 7 v, &c
& en genéral

Q"= = (27 — 1) : v,

o, le figne —4— ¢ff pour Pexpofunt n paiv, le figne — pour expofant
n impatr & gue dv la forte on aura pour la tangente exprimée par
'arc la_fraétion continuetrés fin.ple
X
g v = oy
3:0 — 1
510 — 1

70— 1 ¥
9:v—&ec.
§. 8. Enfecond lien, gue les réfidus R/, RY R/ c. feront
exprimés par les fuites fuivantes, dont les loix de progveffion font égale-
ment fort fimples:

L1 3 R/ —
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R == — ﬁ’-{-——L— $o 8 08 - &e.

v .
3. 3 2,3.4.5 2.3.4.5.6.7
R/ —— 2% 3 46 g5 e O 8 v7~-&c,
2.3.4.§ 2.3.4.5.6.7 2.3.4.5.6.7.8.9
R — 4 2.4.6 “ 4.6.8 0oL 6.8.10 ot &
20---7 2-5---- 9 2----- I
RIV— 1 2.4.6.805__ 4.6.8.10 v 6.8.10.12 V9 &e.
2+--9 Zerer-oll 2 ----- 13
&e.
de forte que les fignes des premiers termes changent [uivant Iordre gua-
ternaire — —— —p= ——, & gi'en géneval il feva
— R — 2" (1.2----7) v"+'+ 2'f+x(r.2-- - (n41)) S g
1.2---(2n+41) 1.2-+----(2n43)
n--1, .t nn+1
_ i 2 () s 2P ) g
— I1.2----- (214 3) 1.2 ----- (2m2+5) ’
n—i—t + ‘
—Rr—y 2" (r2--(n42)) i+ 2" (12 (nt 3) v"+"+ .
- 1.2 ----- (2724+5) 1.2 ----- (2u47) o

§. 9. Or pour donner 3 la démonftration de ces théoremes
toute la briéveté poflible, confidérons que chaque réfidu R%¥* o

trouve en divifant par le réfidu R"*, qui leprécéde immédiatement,
Pantepénultieme R™.  Cette confidération fair, que la démonftration,
dont il s’agit peur<étre partagée en deux parties. Dans la premiere il
faut faire voir que; f7.dsux réfidus R®, R*T?, gui f# fuccedent immedia-

tement ; ont la forme que fe leur ai donnte, le véfiau R+ qui [uit im-
médiatement, aura la meme forme.  Ce qui érant une fois démontré,
il ne refte plus que de faire voir, daas la feconde partie de la démon-
ftration, que la forme des deux premiers véfidus ¢ft celle quils doivent

avoir,
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avoir. Car, de cette maniere, il eft évident que I ferme de tous les
{uivans s’établit comme d’elle - méme.
§, ro0. Commengons donc par divifer le premier terme du ré-

fidu R” par le premier terme du réfidu R"**, afin d'avoir le quo-
tient
Qi — 2" (1.2.3---- 1) i, 2" (12,3 .. (n41)) S

T 1.2.3---(2n+1) T1.2.3- - - - - (2124 3)

. 241 —_— .

= Gt iy Gt

Er il eft clair que, le réfidu R"*™ érant multiplié par ce quotierit

Q" = (21 3) : v,
& le produir érant fouftraic du réiduR”, il doit refter le réfidu R**?

§. 11. Mais afin de n’avoir pas befoin de faire cette opéra.
tion pour chaque terme {éparément & de nous borner par 13 4 une
fimple induftion, prenons le terme général de chacune des fuites

qui expriment les réfidus R”, R*, R**?) deforte quen prenant le
mtieme terme des réfidus R”, R"'H, nous prenions le (m— 1)teme ter-
me du réfidu R™>  Ce qui étant obfervé, ces termes feront

e 2n+m--l<'m,(m+,> . (,,, + 2) ... (” +m—-x).y"+’ m—q
- 1.2.3.4 - - - - - - (214 2m—1)

n—m . n-t-2m
o2 (me(m+1Y(n+ 2y---- - (n+m)v
— - 1.2.3.4 - - - = - (2n+2m+41)

S 2", (m—1)-m-(m+1) - - - - - (n +m)- JHam
—' 1.2.3.4 = - = - - (284 m+1)

Or, puifquil doit &wre
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W IS (z2n 4+ 3):v — r"+’,
& qu'en effet il eft
2u+m——-l~. (’” . - .. <ﬂ+m—-t) vn-}—zm-l

="l ant3)iv—=—

AR E— (2 +2m=1)
A R S MR TT
} 1.2.3 - « - - - (auntz2m+1) ' v

. 2n+m~l.<n --- (7/1'1)1——1)) Un+2m——l (—I-{-
1.2 - - - - (2mtam—2) |

2.(ndm).(2n43)
(2ntf2m).(2n42m4 1)

2n+m-—l. (I --.(;rfm--l)) U"+"”__, (zm—- 2). (:'.ll + ::m)

T La2--- -(znda2m—2) “(Gan t2m) . (2n 4 m 1)
M (=) m (1) - - - - CEND)) Tt
— .23 - - - - - - (zndm+1) ?
& partant

s

” , Rn+l

On voit, que les réfidus R ayaot la forme que je leur ai

donnée, le réfidu R*™* aurala méme forme. Ilne s'agira donc plus,
que de s'affurer de la forme des deux premiers réfidus R/, R”, afin d%¢-
tablir ce que cette premiere partie de notre démonftration avoit admis
comme vrai en forme d’hypothefe.  Et c’eft ce qui fera la feconde
partie de la démonftration.

§. 12.  Souvenons-nous pour cet effer, quele premier réfidu
R’ ¢t celui qui refte en divifant le

I I I
cofl v =1 ——v?f- vt - - - LR
a 2.3 4 1---7m
par le
1 1 1 m
finv—yv——vif——uS .- — ——y o &
2.3 2.3.4.5 1 -~(mfr)
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Or le quotient qui réfulte de Ia divifion du premier terme, -érand
— 1 : v, on voit qu'il fera

I
Rl — cof v — — . {in" o.
v

Multipliant donc le terme général du divifeur,

4 I . vm+l
1.2, - - - - (md:1) ’
par 1 : v, & foultraianc le produit
I
=+ B S
1.2 - - -« (m+ 1) ol
du terme général du dividende
1
: T e v’.’.‘
1.2 - - - - ~m i

on aura le terme général du premier réfidu R/
me ., L™

o — =+

— c—

Lo (ma)
Or (m 4 1) érant toujours un nombre impair; m fera un nombre pair,
& le premier réfida fera
2 4 6

v 4 —— vt — v —1- &c
2.3 2.3.4.5 2----7 ! .
tel que nous llavons {uppofé.

RI'——

§. 13. Le fecond rélidu R” réfulte de la divifion de

I 1
fint—v— ——1p3 4 v5—&ce-- = ! TR
2.3 2.3. 4.5 1.2--- (m—y) '
par le premier réfidu quo nous venons de trouver
2 6 "

Ri=— — 2 4'——v‘-—-————————-u’-{----“.;..‘ my :
2. 3 2.3.4.§ 2----7 I---(m41)

Mm. de I'ricad. Tom, XVIL Mm Or
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Or le quotient qui réfulie de la divifion du premier terme, étant

— — 3 . v, onvoit qu’il fera
R/ = fin v — < . R
Mulcipliant donc le terme général du divifeur
. mu™
TR CEE Y
par — 3 : v, & fouftraiant le produic
- 3m y™?
T (n41)’
du terme général du dividende
X
= 1---~-(m—1) v
le terma général duo fecond réidu fera
— gyt — smn-:
= 1-veee(m—1) T 1 ----(m+1)
e o (m—2).m . o™
T a-- - - (m1)

Subftituant donc pour = les nombres pairs, nous aurons le fecond
réfidu

RV — — 2.4 »3 1 4.6 6.8 '

T vSs v? 4 &e.
2.3:4:5 2 ---7 2---9
encore tel que nous lavons fuppofé.  Ainfi la forme des deux pre-
miers réfidus érant démontrée, il senfuit, en vertu de la premiere
partie de notre démontftration, que la forme de rous les réfidus fui-

vans eft également.

§. 14. Maintenant il n’eft plus néceflaire de démontrer Rpa-
rément la loi de la progreflion des quotiens Q/, Q/, Q' &c. Car
Ja loi des réfidus érant démontrée, il eft par 1a méme démontré qu'un

quotient quelconque fera (§. 10)
[N

P
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: #4-3 .
*+=Q = (a7 4 3) : 1,
ce qui, en vertu de la théorie des fraftions continues, donne

tang v T

9iv—1x
11: v — 1 Ke
d’od 'on voit en méme tems, que foutes Jes fois que Flare v fora ol
 une partie aliguote du rayon, tous ces quotiehs feront des nombres en-
tiers croiffans dans une progreffion arithmétigue.

Er voild ce quil faur obferver, parce que dans le théoreme
d'Euclide cité cy-deflus (§. 3.) tous les quotiens {ont fuppofSs étre
des nombres entiers.  Ainfi juljues ld la méthode que prefcrit Ex-
chde, (era applicable A tous ces cas, ou l'arc v eft une partie aliquote
du rayon. Mais, encore dans ces cas, il 5’y jainr une antre circonftance
qu'il convient de faire remarquer.

§.15. Le probleme que propofe Euclide, Ceft de trouver le plus
grand commun divifeur de dewx nombres entiers, qui ne_font pas premiers
entre eux.  Ce probleme eft réfoluble routes les fois qu'un des réfi-
dus R/, R, R/ &e. - - - R* devient == 0, fans que le réfidu précé-
dent R*** foit égal a 'unité, ce qui {oivant, la 1% Prop. du méme livre
n'arrive que lorsque les denx nombres propofés {oat premiers entre
eux, bien entendu que tous les quotiens Q/; Q”, Q* &c. font fup-
{¥s écre des nombres entiers. Or nous venons de voir, que cette der-
niere fuppofition a lieu dans le cas donr il s’agit ici, toutes les fois

1 . :
que — eft un nombreentier. Mais, quant aux réfidusR’, R”, R/ &e.
v

il 0’y en a aucun qui devienne —= 0. Tout au contraire, en confidé-
Mm 2 rant
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rant la loi de progreflion des réfidus que nous venons de trouver, on
voit, que non feulement ils décroiffent fans interruption, mais qu’ils
décroiffent méme plus forrement qu'aucune progreflion géomérrique.
Quoique donc cela continue 4 l'infini, nous pourrons néanmoins y
appliquer la propofition d’Ewclide. Car, en vertu de cette propofition,
le plus grand commun divifeur de A, B, cofi ci..viéme tems le plus grand
commun divifeur de tous les réfidus R, R/; R’ &e. Or ces réfidus
décroitlant en forte qu’enfin ils deviennent plus petits quaucune quan-
tité aflignable, il s'enfuit que le plus grand commun divifeur de A, B,
¢ff plus petit gidaucune guantité affignable ; ce qui veur dire qu’il n’y en
a point, & que parconféquent A, B, érant des quantités incommenfu-
rables, /2

fang v T —-

B
Jera une quantité irvationelle toutes les fois que ’are v fera une partie ali-
quote du rayon.

§. 16. Voila donc 3 quoi fe borne I'ufage qu’on peut faire
de la propofuion d'Ewnclide. 1l s'agit maintenant de Iétendre a tous
les cas od Varc v eft commenfurable au rayon.  Pour cet effer, &
pour démontrer encore quelques autres théoremes, je vais reprendre
la fraltion continue

I

lang v ';T‘;‘::—i

3:iv—1
§:v—1
70— 1 &e.
& en faifant 1 : v — w, je la transformerai en
I
tang v —— m
3w —1
§10—1
71— 1 &ec. §, 17.
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17 LAMBERT. IRRATIONALITY OF =

By 1750 the number 7 had been exprossed by infinite series, infinite products, and infinite
continued fractions, its valuc had been computed by infinite series to 127 places of decimals
(sce Sclection V.15), and it had been given its present symbol. All these efforts, however,
had not contributed to the solution of the ancient problem of the quadrature of the circle;
the question whether a circle whose area is equal to that of a given square can be constructed
with the sole use of straightedge and compass remained unanswered. It was Kuler’s dis-
covery of the relation between trigonometric and exponential functions that eventually led
to an answer. The first step was made by J. H. Lambert, when, in 1766-1767, he used Euler’s
work to prove the irrationality not only of m, but also of e.

Johann Hecinrich Lambert (1728-1777) was a Swiss from Miilhausen (then in Switzer-
land). Called to Berlin by Frederick the Great, he bccame a member of the Berlin Academy
and thus a colleague of Euler and Lagrange. His name is also connected with the intro-
duction of hyperbolic functions (1770), with perspective (1759, 1774), and with the so-called
Lambert projection in cartography (1772).

Lambert published his proof of the irrationality of = in his ““ Vorldufige Kenntnisse fiir
die, so die Quadratur und Rectification des Circuls suchen,” Beytrige zum Gebrauche der
Mathematik und deren Anwendung 2 (Berlin, 1770), 140-169, written in 1766, and in more
detail in the “Mémoire sur quelques propriétés remarquables des quantités transcendentes
circulaires ot logarithmiques,”” Histoire de I’ Académie, Berlin, 1761 (1768), 266-322, pre-
sented in 1767. They have been reprinted in the Opera mathematica, cd. A. Speiser (2 vols.;
Fiissli, Zurich, 1946, 1948), I, 194-212, 11, 112-159. The following text is a translation from
pp. 132-138 of vol. II. Lambert writes tang where we write tan. Sce also F. Rudio, Archi-
medes, Huygens, Lambert, Legendre. Vier Abhandlungen iiber die Kreismessung (Tcubner,

Leipzig, 1892).

37. Now I say that this tangent [tan pfw] will never be commensurable to the
radius, whatever the integers w, p may be.!

1 In the provious sections Lambert expands tan v, v an arbitrary arc of a circle of radius 1,
into a continued fraction, and gets for v = 1/w

tanv = 1
W -

1
3w +5w— 1 ete.

Investigating the partial fractions and their residues, he finds infinito serios like

1 1 1
tanv =2+ oG = 1) T Bt — D)(i6wd —6w) T

and shows (in §34) that these series converge more rapidly than any decreasing geometric
sories. Then, if w = w:p, w, p being relatively prime integers, ho finds for the partial
fractions of tan v (§36):

200 — @3 BerSa — 3
[ Jwep 15w — ¢ 105wy — 10wy ote.,

—) ’

w 3% — ¢ 16a® — 6p’w 106w® — dbwlig? + ¢

and (§37):
. + ¢°
w(Bw? — ¢?) ' (3w? — 9?)(16a® — buwlp

Thon follows the text which we reproduce.

tan L =% 4 gt eto.
w w
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38. To prove this theorem, let us write
e _M
tan " = P >

such that M and P are quantities expressed in an arbitrary way, even, if you
like, by decimal sequences, which always can happen, even when M, P are
integers, because we have only to multiply each of them by an irrational
quantity. We can also, if we like, write

M=s5n2 P=cos?
w w

as above. And it is clear that, even if tan p/w were rational, this would not
necessarily hold for sin p/w and cos ¢/w.

39. Since the fraction M| P exactly expresses the tangent of ¢/w, it must give
all the quotients w, 3w, 5w, ete., which in the present case are

+2, _.3—2, + 5———“’) —%i ete.

? ? P

40. Hence, if the tangent of ¢/w is rational, then clearly M will be to P as an
integer p is to an integer =, such that, if u, 7 are relatively prime, we shall have

M:p=P:n=D,
and D will be the greatest common divisor of M, P. And since reciprocally
M:D:,L, P:D=1r,

we see that, since M, P are supposed to be irrational quantities, their greatest
common divisor will be equally an irrational quantity, which is the smaller, the
larger the quotients u, » are.

41. Here are therefore the two suppositions of which we must show the incom-
patibility. Let us first divide P by M, and the quotient must be w :p. But since
w:¢ is a fraction, let us divide ¢ P by M, and the quotient w will be the p-tuple
of w:gp. It is clear that we could divide it by ¢ if we wished to do so. This is not
necessary, since it will be sufficient that w be an integer. Having thus obtained
w by dividing P by M, lot the residue be R’'. This residue will equally be tho
@-tuple of what it would have been, and that we have to keep in mind. Now,
since P:D = =, an integer, we still have P :D = ¢m, an integer. Finally,
R’ : D will also be an integer. Indeed, since

oP = wM + R,
we shall have

oP _oM R

D~ D D
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But oP:D = pm, oM :D = wp; hence

’

e = w[l.+—5p

which gives

RI
o= P wp = integer,

which we shall call »*, so that R’/D = #'. The residue of the first division will
therefore still have the divisor D, the greatest common divisor of M, P.

42, Now let us pass to the second division. The residue R’ being the ¢-tuple
of what it would have been if we had divided P instead of . P, we must take this
into account by the second division, where we divide ¢ M, instead of M, by R’
in order to obtain the second quotient, which = 3w :p. However, in order to
avoid the fractional quotient here also, let us divide M by R’, in order to have
the quotient 3w, an integer. Let the residue be R”, and we shall have

¢*M = 3wR’ + R";
hence, dividing by D,

¢?M _3wR'  R"

D-DtD
But
2
z gf = ¢?m = integer,
3——-——‘2)12 = 3wr’ = integer;
hence

”

’m = 3wr’ + %’

which gives R"/D = ¢*m — 3wr’ = an integer number, which we shall write
= 7", 8o that

Hence the greatest common divisor of M, P, R’ is still of the second residue R".

43. Let the next residues be R™, Rv,..., R*, B*+1 R*+2 ., which corre-
spond to the g-tuple quotients 6w, 7w, ..., (2n — lw, (20 + 1)w, (27 + ),
..., and we have to prove in general that if two arbitrary residues R*, R**%, in
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immediate succession, still have D as divisor, the next residue R"*2 will have
it too, so that, if we write

R*:D =,

Rr+1:D = gn+1
where 7* and 7**! are integers, we shall also have
Rr*2:.D = 1‘""’2,

an integer. This is the demonstration.

We omit this proof in §44, since the reasoning follows that of §42.

45. Now we have secen that »’, " are integers (§§41, 42), hence also r~,
v, ..., r" ... to infinity will be integers. Hence any one of the residucs R,
R", R”,..., R, ... to infinity will have D as common divisor. Let us now find
the value of these residues expressed in M, P.

46. Every division provides us avith an equation for this purpose, since we

have
R = ¢P — oM,
R" = ¢*M — 3wR',
R" = ¢?R’' — 5wR’", etc.
But let us observe that in the existing case the quotients w, 3w, 5w, ctc. are

alternately positive and negative and that the signs of the residues succeed each
other in the order — — + +. These equations can therefore be changed into

R' = oM — ¢P,
R" = 3wR' — ¢?M,
R" = bwll” — ¢*R,

or in general
B3 = (2n — 1)R**h— @?R",
From this we see that every residue is related to the two preceding in the same

way as the numerators and denominators of the fractions that approximate the
value of tan pjw (§36).
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47. Let us make the substitutions indicated by these equations in order to
express all these residues by M, P. We shall have

R = oM — oP,
R = (30® — ¢* )M — 3weP,
R" = (16w® — 6we?)M — (16w?p — ¢*)P, etc.

And since these coeflicients of M, P arc the denominators and numerators of the
fractions we found above for tan p/w (§36), we see also that we shall have

M_o_ X
P w P
M 3wp _ F
P 307 — ¢ (3w — ¢9)P’
M 150% — ¢° R

etc.

P " 16a® — Owg®  (16w° — Cwg?) P

48. But we have

M P
“P‘ = tan;,
hence (§§37, 34)
M P _ q;a ¢5
P w w(3w? — ¢?) + Ba® = ¢?)(16w? — Gwep?) + ete.,
M Jwp o .
P 3% — o = (Bw? - ?)2)(15‘03 — 6wy?) + etc.;
hence
P~ w(3w? — ¢?) + Bw? — ) (16a° — 6we?) + ete.,
R" _ @®
(Ba? — PP (3u? — ¢?)(16w® — bwg?) + ete.,
" 7
> + ete.

_ P
(16w° — 6wg?)P ~ (16w® — Bwe?)(106w* — 46w?p? + ¢*)
Thus all the residues can be found by means of the sequence of differences (§37)
3 ¢5
oBa® — ) | Ba? — P)(16a° — 6wp?)

@

+ (15w® — 6we?)(106w! — 45wip? + ¢f)

+ ete.
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by omitting 1, 2, 3, 4, etc. of the first terms and multiplying the sum of the
following terms by the first factor of the denominator of the first term that is
retained and by P.

49. Now, this sequence of differences is more convergent than a decreasing
geometric progression (§§34, 35). Hence the residues R’, R”, R”, cte. deercase
in such a way that they become smaller than any assignable quantity. And as
every one of these residues, having D as common divisor, is a multiple of D, it
follows that this common divisor D is smaller than any assignable quantity,
which makes D = 0. Conscquently M : P is a quantity incommensurable with
unity, hence irrational.

50. Hence every time thut a circular arc = @[w ts commensurable with the radius
= 1, hence rational, the tangent of this arc will be a quantity incommensurable with
the radius, hence irrational. And conversely, every rational tangent is the tangent
of an trrational arc.

51. Now, since the tangent of 45° is rational, and equal to the radius, the arc
of 45°, and hence also the arc of 90°, 180°, 360°, is incommensurable with the
radius. Hence the circumference of the circle does not stand to the diameter as an
integer to an integer. Thus we have here this theorem in the form of a corollary
to another theorem that is infinitely more universal.

52. Indeed, it is precisely this absolute universality that may well surprise us.

Lambert then goes on to draw consequences from his theorem concerning arcs with
rational values of the tangent. Then he draws an analogy between hyperbolic and trigono-
metric functions and proves from the continued fraction for ¢* + 1 that e and all its powers
with integral exponents are irrational, and that all rational numbers have irrational natural
logarithms. He ends with the sweeping conjecture that ‘“no circular or logarithmic trans-
cendental quantity into which no other transcendental quantity enters can be expressed
by any irrational radical quantity,” where by “radical quantity” he means one that is

expressible by such numbers as V2, V3, V4, V2 + V3, and so forth. Lambert does not
prove this; if he had, he would have solved the problem of the quadrature of the circle. The
proof of Lambert’s conjecture had to wait for the work of C. Hermite (1873), and F. Linde-
mann (1882). See, for instance, H. Weber and J. Wellstein, Encyklopddie der Elementar-
Mathematik (3rd ed.; Teubner, Leipzig, 1909), I, 478-492; G. Hessenberg, Transzendenz
von e und w (Teubner, Leipzig, Berlin, 1912); U. G. Mitchell and M. Strain, ‘‘The number e,”
Osiris 1 (1936), 476—496.
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TO

WILLIAM RUTHERFORD, ESQUIRE, L.L.D., FRA.S.,

ROYAL MILITARY ACADEMY, WOOLWICH.

My DEAR Six,

I know of no person to whom I can, with so great pleasure, so
much propricty, and such deep gratitude, inscribe this small volume as
to you, from whom I received my carliest lessons in numbers; and I
earncstly wish it had been something more worthy of notice that the
Pupil was presenting to the Master, than the present “ CoNTRIBUTIONS
To MatneEmaTics” can pretend to be. Still, I venture to indulge and
to express the thought, that whatever proves the firm determination
of any of Great Dritain’s Mathematicians not to allow themsclves to
be outstripped by their Continental ncighbours, cven in calculation,
redounds, in its mecasure, to their own credit, and also affords pleasure
and satisfaction to all who fecl interested in cxccllence of this kind.

You, Sir, have laboured long, ardently, and most successfully in
the Study of Mathematics, and have evinced, in nearly every branch
of that beautiful but abstruse science, such clearness and depth of
thought as are rarcly met with. This however is not all.  We seldom
indeed find profundity united with great facility of computation ;—but
you happily combine both in a very eminent degree.

I regret my inability adequately to convey to you the heart-felt
sentiments of estcem, gratitude, and respect with which

I am, My dcar Sir,
Your sincere and obliged Friend,
THE AUTHOR.

Houghton-le-Spring,
Feb, 28, 1853.
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PRETACE.

Towarps the close of the year 1850, the Author first formed
the design of rectifying the Circle to upwards of 300 places
of decimals. He was fully aware, at that time, that the ac-
complishment of his purpose would add little or nothing to his
fame as a Mathematician, though it might as a Computer; nor
would it be productive of anything in the shape of pecuniary
recompense at all adequate to the labour of such lengthy
computations. He was anxious to fill up scanty intervals of
leisure with the achievement of something original, and which,
at the same time, should not subject him either to great
tension of thought, or to consult books. He is aware that
works on pearly every branch of Mathematics are being
published almost weekly, both in Europe and America; and
that it has therefore become no easy task to ascertain what
really is original matter, even in the pure science itself.

Beautiful speculations, especially in both Plane and Curved
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Geometry, have, even of late years, been pushed to a very
great extent in our own country, without much regard being
paid, as to the probability of their ultimate and direct utility.
The Doctrine of Impossible or Imaginary Quantities, which
certainly long perplexed Mathematicians, has also lately re-
ceived a proper share of attention from men of genius. The
Integration of Quantities seems to merit farther labour and
research ; and no doubt this important and abstruse branch
will, by and by, obtain due consideration, and we shall have
important simplifications of, and additions to, our already

large stock of knowledge.

Holding sentiments somewhat similar to the above, and
having, as before stated, occasionally had spare moments from
the duties of an arduous profession, the Writer entertains the
hope, that Mathematicians will look with indulgence on his
present ¢ Contributions” to their favourite science, and also
induce their Friends and Patrons of Mathematical Studies,
to accord him their generous support, by purchasing copies

of the work.

Dr. Rutherford, of the Royal Military Academy, Woolwich,
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a distinguished Mathematician, has kindly co-operated with
the Author in separately calculating and then collating the
value of # to 441 places of decimals, so that accuracy is en-
sured at least to that extent; and it is confidently hoped no

error has crept into the remaining 86 places.

It is proper to state, that the talented writer just mentioned
lately sent a “ Paper on determining the value of #,” to the
Royal Society of London, an Abstract of which has just been
published in the Proceedings of that Learned Body, wherein are
given the values of tan "'}, of tan 51, and of =, to 441
places of decimals: also, the extension of the same, by the

present writer, to 527 places.

In the following pages, the ratio of the circumference of a
circle to its diameter, is determined to the great extent of 527

places of decimals.

The values, of the base of Napier’s Logarithms, of the
Napierian logarithms of 2, 3, 5, and 10, and of the Modulus
of the Common System, are given to 137 places of decimals,

except that of M, which extends only to 136.
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A few of the higher powers of 2, as far as 2%, having been

obtained in the calculation of tan <, conclude the volume.

It only remains to add, that Machin’s formula, viz.,, = =
4 tan 'L — tan "', was employed in finding 7 :—and that
the values of tan -4, and of tan <} are found and given
separately ; as also the value of each term of the series em-

ployed in determining these two ares.

Houghton-le-Spring,
Feb. 28, 1853.

Since the above date, and while the following sheets were in
the Press, the Author has extended the values of tan "-é— and
of tan “'5z5 to 609, and the value of # to 607 decimals ; which
extensions are given in the proper place. Should Mathe-
maticians evince a wish to possess the extended values of each
term of the series used in finding these arcs, a few supple-

mentary sheets might soon be furnished.

April 30, 1853.
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INTRODUCTORY REMARKS AND HISTORICAL
NOTICES.

Tue Prosrem, “to find the ratio of the circumference of a
circle to its diameter,” has engaged the attention of Mathe-
maticians from very remote times. The Greek Geometers
and Arithmeticians, chiefly from their clumsy scale of notation,
could not be expected to make any considerable progress in
ascertaining the ratio in question: and indeed we may remark,
by the way, that even in the Geometry of Curve lines at large,
they did not and could not proceed to any very great extent.
Until the time of Newton and Leibnitz, the Zimifs of Mathe-
matics were but contracted ; and though since, and by, their
very extraordinary labours, great additions indeed have been
made to the previous stock of Mathematical knowledge, yet
we must admit that not very much has lately been done, or
perhaps remains to be done, towards extending the boundaries
of that department of human knowledge and research. It
would not be of any service to recapitulate in this place what |
is already duly recorded as matter of history respecting the
various Mathematicians, and the different processes employed
by them, who have applied themselves to the solution of this
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striking and curious Problem. Nor can we well afford space
even to glance at the ignorant, presumptuous, and abortive
attempts made at different periods “ to square the circle |” In
later times, Mathematicians—and they alone are competent to
deal with such enquiries—have pointed out satisfactorily how
to find the value of & ultimately by means of infinite series of
various degrees of convergency, as will be seen in what fol-
lows : but no one, so far as we know, has hitherto been able—
and we are of opinion that it can never be accomplished—to
ascertain the limit, strictly speaking, of the ratio under con-
sideration. In other words, the circumference and diameter of
a circle are incommensurable.* We proceed, then, to take up
the history of the Problem since the year 1831. Previous to
1831, the value of «, as the late Professor Thomson of the
University of Glasgow writes, in his work on the Differential
and Integral Calculus, had been calculated “to the extraordi-
nary extent of 140 figures!” We may here be permitted to
indulge a smile at the learned writer’s words, now that the
ratio has been found to 607 places of decimals!

In the year 1841, Dr. Rutherford, Royal Military Academy,
Woolwich, a distinguished Mathematician, presented a paper to
the Royal Society of London, which was published in their
transactions, in which he gave the value of # to 208 decimals.

* For full and interesting particulars, the reader is here referred to the History of this curious
Problem, written by the profound Mathematician Professor De Morgan, and which is given in the
Penny Cyclopzdia.
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The formula he employed is 5= 4 tan -4 — tan~5 + tan .
Subsequently it was found that the last 56 figures were in-
correct, an error having crept into the value of one of the
terms of the series employed. But of this talented writer
we shall have to speak afterwards.

The Mathematician who seems next to have engaged in the
solution of this Problem is M. Dase, about the year 1846,
then a young man of great promise, who used the formula
£ = tan “'5+ tan "+ tan 4. He found the value of =
correctly, as was afterwards shown by Dr. Clausen, to 200 places
of decimals, and communicated his result to Professor Schum-
acher of Altona.

Somewhere about 1847, the eminent Mathematician Dr.
Clausen, of Dorpat, above-mentioned, turned his attention
to this subject, and employing Machin’s formula, ¢+ = 4
tan “'+ — tan 'z, and also the formula ¥= 2 tan "3 + tan "'y,
he calculated the value of z from each of these formule, and
found it correctly to 250 decimals. The values of the four
arcs and of # are given in No. 589 of the ‘“ Astronomiche
Nachrichten,” published in 1847,

In the eartlier portions of the year 1851, the Author of this
Volume, not then aware of M. Dase’s, or of Dr. Clausen’s
labours, employed Machin’s formula, given above, and calcu-
lated the value of # to 315 decimals. Dr. Rutherford, in the
same year, verified the Author’s results, using also Machin’s
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formula ; and moreover pushed his calculations to 350 places
of decimals. During the latter part of 1851, and the early
months of 1852, Dr. Rutherford and the present writer ex-
tended the value of =, the former to 441 places, and the latter
to 527 decimals. In the months of March and April, 1853,
the Author still further extended the ratio in question; and
the value of #, given in this Volume, is, it is presumed, more
extensive than has hitherto been determined, consisting of no

-1

less than 607 decimals. The values of tan =3, and of tan "5
are given to G609 places. These values, then, have been care-
fully collated, as far as 441 decimals, with Dr. Rutherford’s
results, and may be pronounced free from errors, inasmuch as
each party worked independently of the other. The Author,
therefore, is alone responsible for the accuracy of the additional
166 and 1G8 respective places of decimals.

Whether any other Mathematician will appear, possessing
sufficient leisure, patience, and facility of computation, to
calculate the value of # to a still greater extent, remains to be
seen: all that the Author can say is, he takes leave of the
subject for the present, and deems the farther extension of this
ratio a work of considerable difficulty, notwithstanding the
assertions of some writers, who have evidently had little or no
experience in such matters.
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EXPLANATORY REMARKS AND IFORMULAZ.

the

1 1
— tan 539°

From Machin's well known formula, viz. % = 4 tan "%.
value of =, given afterwards, has been determined.

It may also as well be stated here, that from Newton's scrics we have,

o411 1 1 1 ] 1

n g =% — g5 t+35 — 75 to5 —1ms e
a1 1 1 1 1 1 ,

And, tan = oay =o5y—32305 T 52397 — 72307 | 9og9v — &

The value of each term of the above series employed in finding the two ares is
given separately, so that its accuracy may readily be tested; and no difficulty
-can possibly arise to Mathematicians, for whose perusal chiefly the following
pages are intended, in comprehending all that follows.
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+ Terms oF Tan ™
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