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PREFACE.

Our aim in preparing this pamphlet is to bring the material in the collection
of papers in the second edition of our Pi: A Source Book [9] up to date. Moreover,
several delightful pieces came available and are added.

This substantial supplement to the third addition serves as a stand alone
exposition of the recent history of the computation of digits of Pi. It also includes
a discussion of the thorny old question of normality of the distribution of the
digits. Additional material of historical and cultural interest is included, the
most notable being new translations of the two Latin pieces of Viète (Translation
of Article 9 (Excerpt 1): Various Responses on Mathematical Matters: Book VII
(1593) and (Excerpt 2): Defense for the New Cyclometry or “Anti-Axe”), and
a thorough revision of the translation of Huygens’s piece (Article 12) published
in the second edition.

We should like to thank Prof. Marinus Taisbak of Copenhagen for grappling
with Viète’s idiosyncratic style to produce the new translations of his work. We
should like to thank Karen Aardal for permission to use her photograph of Lu-
dolph’s new tombstone in the Pieterskerk in Leiden, the Smithsonian for permis-
sion to reproduce a fine photo of ENIAC, and David and Gregory Chudnovsky
for providing a “Walk on the digits of pi.” We should also like to thank Irving
Kaplansky for his gracious permission to include his “A song about pi”. Finally,
our thanks go to our colleagues whose continued interest in pi has encouraged
our publishers to produce this third edition, as well as for the comments and
corrections to earlier editions that some of them have sent us.

L. Berggren, J. Borwein, P. Borwein
Simon Fraser University, June 2003
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Chapter 1

Pi and Its Friends

This chapter and the next are paraphrased from the book Mathematics by Ex-
periment [15].

1.1 A Recent History of Pi

The first truly electronic computation of π was performed in 1949 on the original
ENIAC. This calculation was suggested by John von Neumann, who wished to
study the digits of π and e. Computing 2037 decimal places of π on the ENIAC
required 70 hours. A similar calculation today could be performed in a fraction
of second on a personal computer.

Later computer calculations were further accelerated by the discovery of ad-
vanced algorithms for performing the required high-precision arithmetic opera-
tions. For example, in 1965 it was found that the newly-discovered fast Fourier
transform (FFT) could be used to perform high-precision multiplications much
more rapidly than conventional schemes. These methods dramatically lowered
the computer time required for computing π and other mathematical constants
to high precision. See also [3] and [19].

In spite of these advances, until the 1970s all computer evaluations of π still
employed classical formulas, usually one of the Machin-type formulas. Some
new infinite series formulas were discovered by Ramanujan around 1910, but
these were not well known until quite recently when his writings were widely
published. Ramanujan’s related mathematics may be followed in [23, 18, 10].
One of these series is the remarkable formula

1

π
=

2
√

2

9801

∞∑

k=0

(4k)!(1103 + 26390k)

(k!)43964k
. (1.1.1)

Each term of this series produces an additional eight correct digits in the result.
Bill Gosper used this formula to compute 17 million digits of π in 1985. Gosper

1



2 CHAPTER 1. PI AND ITS FRIENDS

also computed the first 17 million terms of the continued fraction expansion of
π. At about the same time, David and Gregory Chudnovsky found the following
variation of Ramanujan’s formula:

1

π
= 12

∞∑

k=0

(−1)k (6k)!(13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
. (1.1.2)

Each term of this series produces an additional 14 correct digits. The Chud-
novskys implemented this formula using a clever scheme that enabled them to
utilize the results of an initial level of precision to extend the calculation to
even higher precision. They used this method in several large calculations of π,
culminating with a computation to over four billion decimal digits in 1994.

Along this line, it is interesting to note that the Ramanujan-type series (see
[17, pg. 188]

1

π
=

∞∑
n=0

((
2n
n

)

16n

)3
42 n + 5

16
(1.1.3)

permits one to compute the billionth binary digit of 1/π without computing the
first half of the series.

While the Ramanujan and Chudnovsky series are considerably more efficient
than the classical formulas, they share with them the property that the number
of terms one must compute increases linearly with the number of digits desired
in the result. In other words, if you want to compute π to twice as many digits,
you have to evaluate twice as many terms of the series.

In 1976, Eugene Salamin and Richard Brent independently discovered an
algorithm for π based on the arithmetic-geometric mean (AGM) and some ideas
originally due to Gauss in the 1800s (although for some reason Gauss never saw
the connection to computing π). The Salamin–Brent algorithm may be stated
as follows. Set a0 = 1, b0 = 1/

√
2 and s0 = 1/2. Calculate

ak =
ak−1 + bk−1

2

bk =
√

ak−1bk−1

ck = a2
k − b2

k

sk = sk−1 − 2kck

pk =
2a2

k

sk

. (1.1.4)
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Then pk converges quadratically to π: each iteration of this algorithm approxi-
mately doubles the number of correct digits — successive iterations produce 1, 4,
9, 20, 42, 85, 173, 347 and 697 correct decimal digits of π. Twenty-five iterations
are sufficient to compute π to over 45 million decimal digit accuracy. However,
each of these iterations must be performed using a level of numeric precision
that is at least as high as that desired for the final result.

Beginning in 1985, one of the present authors (Jonathan Borwein) and his
brother Peter Borwein discovered some additional algorithms of this type [17].
One is as follows. Set a0 = 1/3 and s0 = (

√
3− 1)/2. Iterate

rk+1 =
3

1 + 2(1− s3
k)

1/3

sk+1 =
rk+1 − 1

2
ak+1 = r2

k+1ak − 3k(r2
k+1 − 1). (1.1.5)

Then 1/ak converges cubically to π — each iteration approximately triples the
number of correct digits. Another algorithm is as follows: Set a0 = 6− 4

√
2 and

y0 =
√

2− 1. Iterate

yk+1 =
1− (1− y4

k)
1/4

1 + (1− y4
k)

1/4

ak+1 = ak(1 + yk+1)
4 − 22k+3yk+1(1 + yk+1 + y2

k+1). (1.1.6)

Then ak converges quartically to 1/π. This particular algorithm, together with
the Salamin–Brent scheme, has been employed by Yasumasa Kanada of the
University of Tokyo in several computations of π over the past 15 years or so,
including his 1999 computation of π to over 206 billion decimal digits.

Shanks, who in 1961 computed π to over 100,000 digits, once declared that
a billion digit computation would be “forever impossible.” But both Kanada
and the Chudnovskys computed over one billion digits in 1989. Similarly, the
intuitionist mathematicians Brouwer and Heyting once asserted the “impossibil-
ity” of ever knowing whether the sequence “0123456789” appears in the decimal
expansion of π [24]. This sequence was found in 1997 by Kanada, beginning
at position 17,387,594,880. Even as late as 1989, British mathematical physi-
cist Roger Penrose, ventured in the first edition of his book The Emperor’s New
Mind that we are not likely to know whether a string of “ten consecutive sevens”
occurs in the decimal expansion of π [30, pg. 115]. By the time his book was
published, Kanada had already found a string of ten consecutive sixes in his 480-
million-digit computation of π. When one of the present authors mentioned this
to Penrose in 1990, he replied that he was “startled to learn how far the combi-
nation of human mathematical ingenuity with computer technology has enabled
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the calculation of the decimal expansion of π to be carried out.” Accordingly, he
changed his text to “twenty consecutive sevens,” which appeared in subsequent
printings of the book. This was just in time, as a string of ten consecutive sevens
was found by Kanada in 1997, beginning at position 22,869,046,249.

In December 2002, Kanada, with a team consisting of Y. Ushiro of Hitachi,
H. Kuroda and M. Kudoh of the University of Tokyo, and the assistance of nine
others from Hitachi, completed computation of π to over 1.24 trillion decimal
digits. Kanada and his team first computed π in hexadecimal (base 16) to
1,030,700,000,000 places, using the following two arctangent relations for π:

π = 48 tan−1 1

49
+ 128 tan−1 1

57
− 20 tan−1 1

239
+ 48 tan−1 1

110443

π = 176 tan−1 1

57
+ 28 tan−1 1

239
− 48 tan−1 1

682
+ 96 tan−1 1

12943
.

(1.1.7)

The first formula was found in 1982 by K. Takano, a high school teacher and
song writer. The second formula was found by F. C. W. Störmer in 1896.

Kanada and his team evaluated these formulas using a scheme analogous
to that employed by Gosper and the Chudnovskys, in that they were able to
avoid explicitly storing the multiprecision numbers involved. This resulted in a
scheme that is roughly competitive in efficiency compared to the Salamin-Brent
and Borwein quartic algorithms they had previously used, yet with a significantly
lower total memory requirement. In particular, they were able to perform their
latest computation on a system with 1 Tbyte (1012 bytes) main memory, the
same as with their previous computation, yet obtain six times as many digits.

After Kanada and his team verified that the hexadecimal digit strings pro-
duced by these two computations were in agreement, they performed an addi-
tional check by directly computing 20 hexadecimal digits beginning at position
1,000,000,000,001. This calculation employed an algorithm that we shall describe
in Section 1.2, and required 21 hours run time, much less than the time required
for the first step. The result of this calculation, B4466E8D21 5388C4E014, per-
fectly agreed with the corresponding digits produced by the two arctan formulas.
At this point they converted their hexadecimal value of π to decimal, and con-
verted back to hexadecimal as a check. These conversions employed a numerical
approach similar to that used in the main and verification calculations. The
entire computation, including hexadecimal and decimal evaluations and checks,
required roughly 600 hours run time on their 64-node Hitachi parallel super-
computer. The main segment of the computation ran at nearly 1 Tflop/s (i.e.,
one trillion floating-point operations per second), although this performance rate
was slightly lower than the rate of their previous calculation of 206 billion digits.
Full details will appear in an upcoming paper [25].



1.1. A RECENT HISTORY OF PI 5

According to Kanada, the ten decimal digits ending in position one trillion
are 6680122702, while the ten hexadecimal digits ending in position one tril-
lion are 3F89341CD5]. Some data on the frequencies of digits in π, based on
Kanada’s computations, are given in Section 2.1. Additional information of this
sort is available from Kanada’s website:

http://www.super-computing.org

Additional historical background on record-breaking computations of π is avail-
able at

http://www.cecm.sfu.ca/personal/jborwein/pi cover.html

A listing of some milestones in the recent history of the computation of π is
given in Table 1.1.

In retrospect, one might wonder why in antiquity π was not measured to an
accuracy in excess of 22/7. One conjecture is that it reflects not an inability to
do so but instead a very different mind set to a modern (Baconian) experimental
one.

For those who know The Hitchhiker’s Guide to the Galaxy it is amusing that
042 occurs at the digits ending at the fifty-billionth decimal place in each of π
and 1/π—thereby providing an excellent answer to the ultimate question “What
is forty two?”

Much lovely additional material, ‘both sensible and silly’ can be found in Pi
Unleashed [2] and in the Joy of Pi [13] (www.joyofpi.com/).

1.1.1 The ENIAC Integrator and Calculator

ENIAC, built in 1946 at the University of Pennsylvania, had 18,000 vacuum
tubes, 6,000 switches, 10,000 capacitors, 70,000 resistors, 1,500 relays, was 10 feet
tall, occupied 1,800 square feet and weighed 30 tons. ENIAC could perform 5,000
arithmetic operations per second—1,000 times faster than any earlier machine,
but a far cry from today’s leading-edge microprocessors, which can perform more
than four billion operations per second.

The first stored-memory computer, ENIAC could store 200 digits, which
again is a far cry from the hundreds of megabytes in a modern personal com-
puter system. Data flowed from one accumulator to the next, and after each
accumulator finished a calculation, it communicated its results to the next in
line. The accumulators were connected to each other manually. A photo is
shown in Figure 4.6. We observe that the photo—obtained digitally—requires
orders of magnitudes more data than ENIAC could store.
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Ferguson 1946 620
Ferguson 1947 710
Ferguson and Wrench 1947 808
Smith and Wrench 1949 1,120
Reitwiesner et al. (ENIAC) 1949 2,037
Nicholson and Jeenel 1954 3,092
Felton 1957 7,480
Genuys 1958 10,000
Felton 1958 10,021
Guilloud 1959 16,167
Shanks and Wrench 1961 100,265
Guilloud and Filliatre 1966 250,000
Guilloud and Dichampt 1967 500,000
Guilloud and Bouyer 1973 1,001,250
Miyoshi and Kanada 1981 2,000,036
Guilloud 1982 2,000,050
Tamura 1982 2,097,144
Tamura and Kanada 1982 4,194,288
Tamura and Kanada 1982 8,388,576
Kanada, Yoshino and Tamura 1982 16,777,206
Ushiro and Kanada Oct. 1983 10,013,395
Gosper Oct. 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada, Tamura, Kubo, et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Chudnovskys Jun. 1989 525,229,270
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1989 1,011,196,691
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Takahashi and Kanada Jun. 1995 3,221,225,466
Kanada Aug. 1995 4,294,967,286
Kanada Oct. 1995 6,442,450,938
Kanada and Takahashi Jun. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada, Ushiro, Kuroda, Kudoh Dec. 2002 1,241,100,000,000

Table 1.1: Digital era π calculations



1.2. COMPUTING INDIVIDUAL DIGITS OF PI 7

Figure 1.1: The ENIAC “Integrator and Calculator”

1.2 Computing Individual Digits of Pi

An outsider might be forgiven for thinking that essentially everything of interest
with regards to π has been discovered. For example, this sentiment is suggested
in the closing chapters of Beckmann’s 1971 book on the history of π [8, pg. 172].
Ironically, the Salamin–Brent quadratically convergent iteration was discovered
only five years later, and the higher-order convergent algorithms followed in the
1980s. In 1990, Rabinowitz and Wagon discovered a “spigot” algorithm for π,
which permits successive digits of π (in any desired base) to be computed with
a relatively simple recursive algorithm based on the previously generated digits
(see [31]).

But even insiders are sometimes surprised by a new discovery. Prior to 1996,
almost all mathematicians believed that if you want to determine the d-th digit
of π, you have to generate the entire sequence of the first d digits. (For all
of their sophistication and efficiency, the schemes described above all have this
property.) But it turns out that this is not true, at least for hexadecimal (base
16) or binary (base 2) digits of π. In 1996, Peter Borwein, Simon Plouffe, and
one of the present authors (Bailey) found an algorithm for computing individual
hexadecimal or binary digits of π [5]. To be precise, this algorithm:

(1) directly produces a modest-length string of digits in the hexadecimal or
binary expansion of π, beginning at an arbitrary position, without needing
to compute any of the previous digits;
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(2) can be implemented easily on any modern computer;

(3) does not require multiple precision arithmetic software;

(4) requires very little memory; and

(5) has a computational cost that grows only slightly faster than the digit
position.

Using this algorithm, for example, the one millionth hexadecimal digit (or
the four millionth binary digit) of π can be computed in less than a minute on
a 2001-era computer. The new algorithm is not fundamentally faster than best
known schemes for computing all digits of π up to some position, but its elegance
and simplicity are nonetheless of considerable interest. This scheme is based on
the following remarkable new formula for π:

Theorem 1.2.1

π =
∞∑
i=0

1

16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
. (1.2.8)

Proof. First note that for any k < 8,

∫ 1/
√

2

0

xk−1

1− x8
dx =

∫ 1/
√

2

0

∞∑
i=0

xk−1+8i dx

=
1

2k/2

∞∑
i=0

1

16i(8i + k)
. (1.2.9)

Thus one can write

∞∑
i=0

1

16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)

=

∫ 1/
√

2

0

4
√

2− 8x3 − 4
√

2x4 − 8x5

1− x8
dx, (1.2.10)

which on substituting y =
√

2x becomes

∫ 1

0

16 y − 16

y4 − 2 y3 + 4 y − 4
dy =

∫ 1

0

4y

y2 − 2
dy −

∫ 1

0

4y − 8

y2 − 2y + 2
dy

= π. (1.2.11)

2
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However, in presenting this formal derivation we are disguising the actual
route taken to the discovery of this formula. This route is a superb example of
experimental mathematics in action.

It all began in 1995, when Peter Borwein and Simon Plouffe of Simon Fraser
University observed that the following well-known formula for log 2 permits one
to calculate isolated digits in the binary expansion of log 2:

log 2 =
∞∑

k=0

1

k2k
. (1.2.12)

This scheme is as follows. Suppose we wish to compute a few binary digits be-
ginning at position d+1 for some integer d > 0. This is equivalent to calculating
{2d log 2}, where {·} denotes fractional part. Thus we can write

{2d log 2} =

{{
d∑

k=0

2d−k

k

}
+

∞∑

k=d+1

2d−k

k

}

=

{{
d∑

k=0

2d−k mod k

k

}
+

∞∑

k=d+1

2d−k

k

}
. (1.2.13)

We are justified in inserting “mod k” in the numerator of the first summation,
because we are only interested in the fractional part of the quotient when divided
by k.

Now the key observation is this: the numerator of the first sum in equation
(1.2.13), namely 2d−k mod k, can be calculated very rapidly by means of the bi-
nary algorithm for exponentiation, performed modulo k. The binary algorithm
for exponentiation is merely the formal name for the observation that exponenti-
ation can be economically performed by means of a factorization based on the bi-
nary expansion of the exponent. For example, we can write 317 = ((((32)2)2)2)·3,
thus producing the result in only five multiplications, instead of the usual 16.
According to Knuth, this technique dates back at least to 200 bce [26]. In our
application, we need to obtain the exponentiation result modulo a positive inte-
ger k. This can be done very efficiently by reducing modulo k the intermediate
multiplication result at each step of the binary algorithm for exponentiation. A
formal statement of this scheme is as follows:

Algorithm 1 Binary algorithm for exponentiation modulo k.

To compute r = bn mod k, where r, b, n and k are positive integers: First set
t to be the largest power of two such that t ≤ n, and set r = 1. Then

A: if n ≥ t then r ← br mod k; n ← n− t; endif
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t ← t/2
if t ≥ 1 then r ← r2 mod k; go to A; endif 2

Note that the above algorithm is performed entirely with positive integers that
do not exceed k2 in size. Thus ordinary 64-bit floating-point or integer arith-
metic, available on almost all modern computers, suffices for even rather large
calculations. 128-bit floating-point arithmetic (double-double or quad precision),
available at least in software on many systems (see Section ??), suffices for the
largest computations currently feasible.

We can now present the algorithm for computing individual binary digits of
log 2.

Algorithm 2 Individual digit algorithm for log 2.

To compute the (d + 1)-th binary digit of log 2: Given an integer d > 0, (1)
calculate each numerator of the first sum in equation (1.2.13), using Algorithm
1, implemented using ordinary 64-bit integer or floating-point arithmetic; (2)
divide each numerator by the respective value of k, again using ordinary floating-
point arithmetic; (3) sum the terms of the first summation, while discarding any
integer parts; (4) evaluate the second summation as written using floating-point
arithmetic — only a few terms are necessary since it rapidly converges; and (5)
add the result of the first and second summations, discarding any integer part.
The resulting fraction, when expressed in binary, gives the first few digits of the
binary expansion of log 2 beginning at position d + 1. 2

As soon as Borwein and Plouffe found this algorithm, they began seeking
other mathematical constants that shared this property. It was clear that any
constant α of the form

α =
∞∑

k=0

p(k)

q(k)2k
, (1.2.14)

where p(k) and q(k) are integer polynomials, with deg p < deg q and q having
no zeroes at positive integer arguments, is in this class. Further, any rational
linear combination of such constants also shares this property. Checks of various
mathematical references eventually uncovered about 25 constants that possessed
series expansions of the form given by equation (1.2.14).

As you might suppose, the question of whether π also shares this property did
not escape these researchers. Unfortunately, exhaustive searches of the mathe-
matical literature did not uncover any formula for π of the requisite form. But
given the fact that any rational linear combination of constants with this prop-
erty also shares this property, Borwein and Plouffe performed integer relation
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searches to see if a formula of this type existed for π. This was done, using
computer programs written by one of the present authors (Bailey), which im-
plement the “PSLQ” integer relation algorithm in high-precision, floating-point
arithmetic [21, 4, 15, 14].

In particular, these three researchers sought an integer relation for the real
vector (α1, α2, · · · , αn), where α1 = π and (αi, 2 ≤ i ≤ n) is the collection of
constants of the requisite form gleaned from the literature, each computed to
several hundred decimal digit precision. To be precise, they sought an n-long
vector of integers (ai) such that

∑
i aiαi = 0, to within a very small “epsilon.”

After a month or two of computation, with numerous restarts using new α vectors
(when additional formulas were found in the literature) the identity (1.2.8) was
finally uncovered. The actual formula found by the computation was:

π = 4F (1/4, 5/4; 1;−1/4) + 2 tan−1(1/2)− log 5 (1.2.15)

where F (1/4, 5/4; 1;−1/4) = 0.955933837 . . . is a hypergeometric function eval-
uation. Reducing this expression to summation form yields the new π formula:

π =
∞∑
i=0

1

16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)
. (1.2.16)

To return briefly to the derivation of the formula (1.2.16), let us point out
that it was discovered not by formal reasoning, or even by computer-based sym-
bolic processing, but instead by numerical computations using a high-precision
implementation of the PSLQ integer relation algorithm. It is most likely the
first instance in history of the discovery of a new formula for π by a computer.
We might mention that in retrospect formula (1.2.16) could be found much more
quickly, by seeking integer relations in the vector (π, S1, S2, · · · , S8), where

Sj =
∞∑

k=0

1

16k(8k + j)
. (1.2.17)

Such a calculation could be done in a few seconds on a computer, even if one did
not know in advance to use 16 in the denominator and nine terms in the search,
but instead had to stumble on these parameters by trial and error. But this
observation is, as they say, 20-20 hindsight. The process of real mathematical
discovery is often far more tortuous and less elegant than the polished version
typically presented in textbooks and research journals.

It should be clear at this point that the scheme for computing individual
hexadecimal digits of π is very similar to Algorithm 2. For completeness we
state it as follows:

Algorithm 3 Individual digit algorithm for π.
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To compute the (d + 1)-th hexadecimal digit of π: Given an integer d > 0,
we can write

{16dπ} = {4{16dS1} − 2{16dS4} − {16dS5} − {16dS6}}, (1.2.18)

using the Sj notation of equation (1.2.17). Now apply Algorithm 2, with

{16dSj} =

{{
d∑

k=0

16d−k

8k + j

}
+

∞∑

k=d+1

16d−k

8k + j

}

=

{{
d∑

k=0

16d−k mod 8k + j

8k + j

}
+

∞∑

k=d+1

16d−k

8k + j

}
(1.2.19)

instead of equation (1.2.13), to compute {16dSj} for j = 1, 4, 5, 6. Combine
these four results, discarding integer parts, as shown in (1.2.18). The resulting
fraction, when expressed in hexadecimal notation, gives the hex digit of π in
position d + 1, plus a few more correct digits. 2

As with Algorithm 2, multiple-precision arithmetic software is not required—
ordinary 64-bit or 128-bit floating-point arithmetic suffices even for some rather
large computations. We have omitted here some numerical details for large
computations—see [5]. Sample implementations in both C and Fortran-90 are
available from the web site http://www.nersc.gov/~dhbailey.

One mystery that remains unanswered is why the formula (1.2.8) was not
discovered long ago. As you can see from the above proof, there is nothing very
sophisticated about its derivation. There is no fundamental reason why Euler,
for example, or Gauss or Ramanujan, could not have discovered it. Perhaps the
answer is that its discovery was a case of “reverse mathematical engineering.”
Lacking a motivation to find such a formula, mathematicians of previous eras
had no reason to derive one. But this still doesn’t answer the question of why
the algorithm for computing individual digits of log 2 had not been discovered
before—it is based on a formula, namely equation (1.2.12), that has been known
for centuries.

Needless to say, Algorithm 3 has been implemented by numerous researchers.
In 1997, Fabrice Bellard of INRIA computed 152 binary digits of π starting at the
trillionth position. The computation took 12 days on 20 workstations working in
parallel over the Internet. His scheme is actually based on the following variant
of 1.2.8:

π = 4
∞∑

k=0

(−1)k

4k(2k + 1)

− 1

64

∞∑

k=0

(−1)k

1024k

(
32

4k + 1
+

8

4k + 2
+

1

4k + 3

)
. (1.2.20)
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Hex Digits Beginning
Position At This Position
106 26C65E52CB4593

107 17AF5863EFED8D

108 ECB840E21926EC

109 85895585A0428B

1010 921C73C6838FB2

1011 9C381872D27596

1.25× 1012 07E45733CC790B

2.5× 1014 E6216B069CB6C1

Table 1.2: Computed hexadecimal digits of π

This formula permits individual hex or binary digits of π to be calculated roughly
43% faster than (1.2.8).

A year later, Colin Percival, then a 17-year-old student at Simon Fraser
University, utilized a network of 25 machines to calculate binary digits in the
neighborhood of position five trillion, and then in the neighborhood of 40 trillion.
In September, 2000, he found that the quadrillionth binary digit is ‘0,’ based on
a computation that required 250 CPU-years of run time, carried out using 1734
machines in 56 countries. The table in Table 1.2 gives some results known as of
this writing.

One question that immediately arises in the wake of this discovery is whether
or not there is a formula of this type and an associated computational scheme
to compute individual decimal digits of π. Searches conducted by numerous
researchers have been unfruitful. Now it appears that there is no non-binary
formula of this type—this is ruled out by a new result co-authored by one of
the present authors (see Section 1.3) [16]. However, none of this removes the
possibility that there exists some completely different approach that permits
rapid computation of individual decimal digits of π. Also, there do exist formulas
for certain other constants that admit individual digit calculation schemes in
various non-binary bases (including base ten).

1.3 Does Pi Have a Non-Binary BBP Formula?

As mentioned above, from the day that the BBP-formula for π was discovered,
researchers have wondered whether there exist BBP-type formulas that would
permit computation of individual digits in bases other than powers of two (such
as base ten). This is not such a far-fetched possibility, because both base-2 and
base-3 formulas are known for π2, as well as for log 2. But extensive computations
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failed to find any non-binary formulas for π.
Recently it has been shown that there are no non-binary Machin-type arc-

tangent formulas for π. We believe that if there is no non-binary Machin-type
arctangent formula for π, then there is no non-binary BBP-type formula of any
form for π. We summarize this result here. Full details and other related results
can be found in [16].

We say that the integer b > 1 is not a proper power if it cannot be written as
cm for any integers c and m > 1. We will use the notation ordp(z) to denote the
p-adic order of the rational z ∈ Q. In particular, ordp(p) = 1 for prime p, while
ordp(q) = 0 for primes q 6= p, and ordp(wz) = ordp(w) + ordp(z). The notation
νb(p) will mean the order of the integer b in the multiplicative group of the
integers modulo p. We will say that p is a primitive prime factor of bm−1 if m is
the least integer such that p|(bm−1). Thus p is a primitive prime factor of bm−1
provided νb(p) = m. Given the Gaussian integer z ∈ Q[i] and the rational prime
p ≡ 1 (mod 4), let θp(z) denote ordp(z) − ordp(z), where p and p are the two
conjugate Gaussian primes dividing p, and where we require 0 < =(p) < R(p)
to make the definition of θp unambiguous. Note that

θp(wz) = θp(w) + θp(z). (1.3.21)

Given κ ∈ R, with 2 ≤ b ∈ Z and b not a proper power, we say that κ has a
Z-linear or Q-linear Machin-type BBP formula to the base b if and only if κ can
be written as a Z-linear or Q-linear combination (respectively) of generators of
the form

arctan

(
1

bm

)
= = log

(
1 +

i

bm

)
= bm

∞∑

k=0

(−1)k

b2mk(2k + 1)
. (1.3.22)

We will also use the following theorem, first proved by Bang in 1886:

Theorem 1.3.1 The only cases where bm − 1 has no primitive prime factor(s)
are when b = 2, m = 6, bm − 1 = 32 · 7; and when b = 2N − 1, N ∈ Z, m = 2,
bm − 1 = 2N+1(2N−1 − 1).

We can now state the main result of this section:

Theorem 1.3.2 Given b > 2 and not a proper power, then there is no Q-linear
Machin-type BBP arctangent formula for π.

Proof. It follows immediately from the definition of a Q-linear Machin-type
BBP arctangent formula that any such formula has the form

π =
1

n

M∑
m=1

nm= log(bm − i) (1.3.23)
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where n > 0 ∈ Z, nm ∈ Z, and M ≥ 1, nM 6= 0. This implies that

M∏
m=1

(bm − i)nm ∈ eniπQ× = Q× (1.3.24)

For any b > 2 and not a proper power we have Mb ≤ 2, so it follows from Bang’s
Theorem that b4M − 1 has a primitive prime factor, say p. Furthermore, p must
be odd, since p = 2 can only be a primitive prime factor of bm− 1 when b is odd
and m = 1. Since p is a primitive prime factor, it does not divide b2M − 1, and
so p must divide b2M + 1 = (bM + i)(bM − i). We cannot have both p|bM + i and
p|bM−i, since this would give the contradiction that p|(bM +i)−(bM−i) = 2i. It
follows that p ≡ 1 (mod 4), and that p factors as p = pp over Z[i], with exactly
one of p, p dividing bM − i. Referring to the definition of θ, we see that we must
have θp(b

M − i) 6= 0. Furthermore, for any m < M neither p nor p can divide
bm − i since this would imply p | b4m − 1, 4m < 4M , contradicting the fact that
p is a primitive prime factor of b4M − 1. So for m < M we have θp(b

m − i) = 0.
Referring to equation (1.3.23), using equation (1.3.21) and the fact that nM 6= 0,
we get the contradiction

0 6= nMθp(b
M − i) =

M∑
m=1

nmθp(b
m − i) = θp(Q

×) = 0. (1.3.25)

Thus, our assumption that there was a b-ary Machin-type BBP arctangent for-
mula for π must be false. 2
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Chapter 2

Normality of Numbers

2.1 Normality: A Stubborn Question

Given a real number α and an integer b > 2, we say that α is b-normal or
normal base b if every sequence of k consecutive digits in the base-b expansion
of α appears with limiting frequency b−k. In other words, if a constant is 10-
normal, then the limiting frequency of ‘3’ (or any other single digit) in its decimal
expansion is 1/10, the limiting frequency of ‘58’ (or any other two-digit pair) is
1/100, and so forth. We say that a real number α is absolutely normal if it is
b-normal for all integers b > 1 simultaneously.

In spite of these strong conditions, it is well-known from measure theory
that the set of absolutely normal real numbers in the unit interval has measure
one, or in other words that almost all real numbers are absolutely normal [28].
Further, from numerous analyses of computed digits, it appears that all of the
fundamental constants of mathematics are normal to commonly used number
bases. By “fundamental constants” we include π, e,

√
2, the golden mean

τ = (1+
√

5)/2, as well as log n and the Riemann zeta function ζ(n) for positive
integers n > 1, and many others. For example, it is a reasonable conjecture
that every irrational algebraic number is absolutely normal, since there is no
known example of an irrational algebraic number whose decimal expansion (or
expansion in any other base) appears to have skewed digit-string frequencies.

Decimal values are given for a variety of well-known mathematical constants
in Table 2.1 [20, 22]. In addition to the widely recognized constants such as π
and e, we have listed Catalan’s constant (G), Euler’s constant (γ), an evaluation
of the elliptic integral of the first kind K(1/

√
2), an evaluation of an elliptic

integral of the second kind E(1/
√

2), Feigenbaum’s α and δ constants, Khint-
chine’s constant K and Madelung’s constant M3. Binary values for some of
these constants, as well as Chaitin’s Ω constant (from the field of computational
complexity) [20], are given in Table 2.2. As you can see, none of the expansions

17
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Figure 2.1: A random walk based on a million digits of π

in either table exhibits any evident “pattern.”

The digits of π have been studied more than any other single constant, in
part because of the widespread fascination with π. Along this line, Yasumasa
Kanada of the University of Tokyo has tabulated the number of occurrences of
the ten decimal digits ‘0’ through ‘9’ in the first one trillion decimal digits of π.
These counts are shown in Table 2.3. For reasons given in Section 1.2, binary (or
hexadecimal) digits of π are also of considerable interest. To that end Kanada
has also tabulated the number of occurrences of the 16 hexadecimal digits ‘0’
through ‘F,’ as they appear in the first one trillion hexadecimal digits. These
counts are shown in Table 2.4. As you can see, both the decimal and hexadecimal
single-digit counts are entirely reasonable.

Some readers may be amused by the PiSearch utility, which is available at:
http://pi.nersc.gov

This online tool permits one to enter one’s name (or any other modest-length
alphabetic string, or any modest-length hexadecimal string) and see if it appears
encoded in the first four billion binary digits of π (i.e., the first one billion
hexadecimal digits of π). Along this line, a graphic based on a random walk of
the first million decimal digits of π, courtesy of David and Gregory Chudnovsky,
is shown in Figure 2.1. It maps the digit stream to a surface in ways similar to
those used by Mandelbrot and others.

The question of whether π, in particular, or, say,
√

2 is normal or not has
intrigued mathematicians for centuries. But in spite of centuries of effort, not
a single one of the fundamental constants of mathematics has ever been proven
to be b-normal for any integer b, much less for all integer bases simultaneously.
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Constant Value√
2 1.4142135623730950488 . . .√
3 1.7320508075688772935 . . .√
5 2.2360679774997896964 . . .

φ =
√

5−1
2

0.61803398874989484820 . . .
π 3.1415926535897932385 . . .

1/π 0.31830988618379067153 . . .
e 2.7182818284590452354 . . .

1/e 0.36787944117144232160 . . .
eπ 23.140692632779269007 . . .

log 2 0.69314718055994530942 . . .
log 10 2.3025850929940456840 . . .

log2 10 3.3219280948873623478 . . .
log10 2 0.30102999566398119522 . . .
log2 3 1.5849625007211561815 . . .
ζ(2) 1.6449340668482264365 . . .
ζ(3) 1.2020569031595942854 . . .
ζ(5) 1.0369277551433699263 . . .

G 0.91596559417721901505 . . .
γ 0.57721566490153286061 . . .

Γ(1/2) =
√

π 1.7724538509055160273 . . .
Γ(1/3) 2.6789385347077476337 . . .
Γ(1/4) 3.6256099082219083121 . . .

K(1/
√

2) 1.8540746773013719184 . . .

E(1/
√

2) 1.3506438810476755025 . . .
αf 4.669201609102990 . . .
δf 2.502907875095892 . . .
K 2.6854520010653064453 . . .

M3 1.7475645946331821903 . . .

Table 2.1: Decimal values of various mathematical constants
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Constant Value
π 11.001001000011111101101010100010001000010110100011000010001 . . .
e 10.101101111110000101010001011000101000101011101101001010100 . . .√
2 1.0110101000001001111001100110011111110011101111001100100100 . . .√
3 1.1011101101100111101011101000010110000100110010101010011100 . . .

log 2 0.1011000101110010000101111111011111010001110011110111100110 . . .
log 3 1.0001100100111110101001111010101011010000001100001010100101 . . .

Ω 0.0000001000000100001000001000011101110011001001111000100100 . . .

Table 2.2: Binary values of various mathematical constants

Digit Occurrences
0 99999485134
1 99999945664
2 100000480057
3 99999787805
4 100000357857
5 99999671008
6 99999807503
7 99999818723
8 100000791469
9 99999854780

Total 1000000000000

Table 2.3: Statistics for the first trillion decimal digits of π
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Digit Occurrences
0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

Table 2.4: Statistics for the first trillion hexadecimal digits of π

And this is not for lack of trying—some very good mathematicians have seriously
investigated this problem, but to no avail. Even much weaker results, such as
“the digit ‘1’ appears with nonzero limiting frequency in the binary expansion
of π” and “the digit ‘5’ appears infinitely often in the decimal expansion of

√
2”

have heretofore remained beyond the reach of modern mathematics.
One result in this area is the following. Let f(n) =

∑
1≤j≤nblog10 jc. Then

the Champernowne number

∞∑
N=0

n

10n+f(n)
= 0.12345678910111213141516171819202122232425 . . . ,

(i.e., where the positive integers are concatenated) is known to be 10-normal,
with a similar form and normality result for other bases (the authors are indebted
to Richard Crandall for the formula above). However no one, to the authors’
knowledge, has ever argued that this number is a “natural” or “fundamental”
constant of mathematics.

Consequences of a proof in this area would definitely be interesting. For
starters, such a proof would immediately provide an inexhaustible source of
provably reliable pseudorandom numbers for numerical or scientific experimen-
tation. We also would obtain the mind-boggling but uncontestable consequence
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that if π for example is shown to be 2-normal, then the entire text of the Bible,
the Koran and the works of William Shakespeare, as well as the full LATEXsource
text for this book, must all be contained somewhere in the binary expansion of
π, where consecutive blocks of eight bits (two hexadecimal digits) each represent
one ASCII character. Unfortunately, this would not be much help to librarians
or archivists, since every conceivable misprint of each of these books would also
be contained in the binary digits of π.

2.2 BBP Constants and Normality

Until recently, the BBP formulas mentioned in Sections 1.2 and ?? were assigned
by some to the realm of “recreational” mathematics—interesting but of no seri-
ous consequence. But the history of mathematics has seen many instances where
results once thought to be idle curiosities were later found to have significant
consequences. This now appears to be the case with the theory of BBP-type
constants.

What we shall establish below, in a nutshell, is that the 16-normality of π
(which of course is equivalent to the 2-normality of π), as well as the normality
of numerous other irrational constants that possess BBP-type formulas, can be
reduced to a certain plausible conjecture in the theory of chaotic sequences. We
do not know at this time what are the full implications of this result. It may be
the first salvo in the resolution of this age-old mathematical question, or it may
be merely a case of reducing one very difficult mathematical problem to another.
But at the least, this result appears to lay out a structure—a “roadmap” of
sorts—for the analysis of this question. Thus it seems worthy of investigation.

We shall also establish that a certain well-defined class of real numbers,
uncountably infinite in number, is indeed b-normal for certain bases b, which
result is not dependent on any unproven conjecture. We will also present some
results on the digit densities of algebraic irrationals. All of these recent results are
direct descendants of the theory of BBP-type constants that we have presented
in Sections 1.2 and [15].

The results for BBP-type constants derive from the following observation,
which was given in a recent paper by one of the present authors and Richard
Crandall [6]. Here we define the norm ||α|| for α ∈ [0, 1) as ||α|| = min(α, 1−α).
With this definition, ||α − β|| measures the shortest distance between α and β
on the unit circumference circle in the natural way. Suppose α is given by a
BBP-type formula, namely

α =
∞∑

k=0

p(k)

bkq(k)
(2.2.1)
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where p and q are polynomials with integer coefficients, with 0 ≤ deg p < deg q,
and with q having no zeroes at positive integer arguments. Now define the
recursive sequence (xn) as x0 = 0, and

xn =

{
bxn−1 +

p(n)

q(n)

}
(2.2.2)

where the notation {·} denotes fractional part as before. Recall from Section 1.2
that we can write the base-b expansion of α beginning at position n + 1, which
we denote αn, as

αn = {bnα} =

{ ∞∑

k=0

bn−kp(k)

q(k)

}

=

{{
n∑

k=0

bn−kp(k)

q(k)

}
+

∞∑

k=n+1

bn−kp(k)

q(k)

}
. (2.2.3)

Now observe that the sequence (xn) generates the first part of this expression. In
particular, given ε > 0, assume that n is sufficiently large such that p(k)/q(k) < ε
for all k ≥ n. Then we can write, for all sufficiently large n,

||xn − αn|| =

∣∣∣∣∣
∞∑

k=n+1

bn−kp(k)

q(k)

∣∣∣∣∣

≤ ε

∞∑

k=n+1

bn−k =
ε

b− 1
< ε. (2.2.4)

With this argument, we have established the following, which we observe is also
true if the expression p(k)/q(k) is replaced by any more general sequence r(k)
that tends to zero for large k:

Theorem 2.2.1 Let α be a BBP-type constant as defined above, with αn the
base-b expansion of α beginning at position n + 1, and (xn) the BBP sequence
associated with α, as given in (2.2.2) above. Then |xn − αn| → 0 as n →∞.

In other words, the BBP sequence associated with α (as given in formula
(2.2.2) is a close approximation to the sequence (αn) of shifted digit expansions,
so much so that we might expect that if one has a property such as equidistri-
bution in the unit interval, then the other does also. We now state a hypothesis,
which is believed to be true, based on experimental evidence, but which is not
yet proven:

Hypothesis A (Bailey-Crandall). Let p(x) and q(x) be polynomials with
integer coefficients, with 0 ≤ deg p < deg q, and with q having no zeroes for
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positive integer arguments. Let b ≥ 2 be an integer, and let rn = p(n)/q(n).
Then the sequence x = (x0, x1, x2, . . .) determined by the iteration x0 = 0, and

xn = {bxn−1 + rn} (2.2.5)

either has a finite attractor or is equidistributed in [0, 1).

The terms “equidistributed” and “finite attractor” are defined in [6, 15]. Here
we rely on intuition.

Theorem 2.2.2 Assuming Hypothesis A, any constant α given by a formula
of the type α =

∑
k p(k)/(bkq(k)), with p(k) and q(k) polynomials as given in

Hypothesis A, is either rational or normal base b.

We should note here that even if a particular instance of Hypothesis A could
be established, it would have significant consequences. For example, if it could
be established that the simple iteration given by x0 = 0 and

xn =

{
2xn−1 +

1

n

}
(2.2.6)

is equidistributed in [0, 1), then it would follow from Theorem 2.2.2 that log 2 is
2-normal. Observe that this sequence is simply the BBP sequence for log 2. In
a similar vein, if it could be established that the iteration given by x0 = 0 and

xn =

{
16xn−1 +

120n2 − 89n + 16

512n4 − 1024n3 + 712n2 − 206n + 21

}
(2.2.7)

is equidistributed in [0, 1), then it would follow that π is 16-normal (and so
is 2-normal also). This is the BBP sequence for π. The fractional term here
is obtained by combining the four fractions in the BBP formula for π, namely
equation (1.2.8), into one fraction, and then shifting the index by one.

Before continuing, we wish to mention a curious phenomenon. Suppose we
compute the binary sequence yn = b2xnc, where (xn) is the sequence associated
with log 2 as given in equation 2.2.6. In other words, (yn) is the binary sequence
defined as yn = 0 if xn < 1/2 and yn = 1 if xn ≥ 1/2. Theorem 2.2.1 tells us,
in effect, that (yn) eventually should agree very well with the true sequence of
binary digits of log 2. In explicit computations, we have found that the sequence
(yn) disagrees with 15 of the first 200 binary digits of log 2, but in only one
position over the range 5000 to 8000.

As noted above, the BBP sequence for π is x0 = 0, and xn as given in
equation (2.2.7). In a similar manner as with log 2, we can compute the hex-
adecimal digit sequence yn = b16xnc. In other words, we can divide the unit
interval into 16 equal subintervals, labeled (0, 1, 2, 3, . . . , 15), and set yn to be
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the label of the subinterval in which xn lies. When this is done, a remarkable
phenomenon occurs: the sequence (yn) appears to perfectly (not just approxi-
mately) produce the hexadecimal expansion of π. In explicit computations, the
first 1,000,000 hexadecimal digits generated by this sequence are identical with
the first 1,000,000 hexadecimal digits of π−3. (This is a fairly difficult computa-
tion, as it must be performed to very high precision and is not easily performed
on a parallel computer system.)

Conjecture. The sequence (b16xnc), where (xn) is the sequence of iterates
defined in equation (2.2.7), precisely generates the hexadecimal expansion of
π − 3.

Evidently this phenomenon arises from the fact that in the sequence associated
with π, the perturbation term rn = p(n)/q(n) is summable, whereas the corre-
sponding expression for log 2, namely 1/n, is not summable. In particular, note
that expression (2.2.4) for α = π is

||αn − xn|| =
∞∑

k=n+1

120k2 − 89k + 16

16j−n(512k4 − 1024k3 + 712k2 − 206k + 21)

≈ 120(n + 1)2 − 89(n + 1) + 16

16(512(n + 1)4 − 1024(n + 1)3 + 712(n + 1)2 − 206(n + 1) + 21)

(2.2.8)

so that
∞∑

n=1

||αn − xn|| ≈ 0.01579 . . . . (2.2.9)

For the sake of heuristic argument, let us assume for the moment that the
αn are independent, uniformly distributed random variables in (0, 1), and let
δn = ||αn − xn||. Note that an error (i.e. an instance where xn lies in a different
subinterval of the unit interval than αn) can only occur when αn is within δn

of one of the points (0, 1/16, 2/16, · · · , 15/16). Since xn < αn for all n (where
< is interpreted in the wrapped sense when xn is slightly less than one), this
event has probability 16δn. Then the fact that the sum (2.2.9) has a finite
value implies, by the first Borel-Cantelli lemma, that there can only be finitely
many errors [12, pg. 153]. The comparable figure for log 2 is infinite, which
implies by the second Borel-Cantelli lemma that discrepancies can be expected
to appear indefinitely, but with decreasing frequency. Further, the small value
of the sum (2.2.9) suggests that it is unlikely that any errors will be observed. If
instead of summing (2.2.9) from one to infinity, we instead sum from 1,000,001
to infinity (since we have computationally verified that there are no errors in the
first 1,000,000 elements), then we obtain 1.465× 10−8, which suggests that it is
very unlikely that any errors will ever occur.
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2.3 A Class of Provably Normal Constants

We now summarize an intriguing recent development in this arena, due to one
of the present authors and Richard Crandall, which offers additional hope that
the BBP approach may eventually yield the long-sought proof of normality for
π, log 2 and other BBP-type constants [7]. In the previous section, we noted
that the 2-normality of

log 2 =
∞∑

n=1

1

n2n
(2.3.10)

rests on the (unproven) conjecture that the iteration given by x0 = 0 and xn =
{2xn−1 + 1/n} is equidistributed in the unit interval. We now consider the class
of constants where the summation defining log 2, namely (2.2.6), is taken over a
certain subset of the positive integers:

αb,c =
∑

n=ck>1

1

nbn
=

∞∑

k=1

1

ckbck , (2.3.11)

where b > 1 and c > 2 are integers. The simplest instance of this class is

α2,3 =
∑

n=3k>1

1

n2n
=

∞∑

k=1

1

3k23k (2.3.12)

= 0.0418836808315029850712528986245716824260967584654857 . . .10

= 0.0AB8E38F684BDA12F684BF35BA781948B0FCD6E9E06522C3F35B . . .16 .

We first prove the following interesting fact:

Theorem 2.3.1 Each of the constants αb,c, where b > 1 and c > 2 are integers,
is transcendental.

Proof. A famous theorem due to Roth states [32] that if |P/Q − α| < 1/Q2+ε

admits infinitely many rational solutions P/Q (i.e. if α is approximable to
degree 2 + ε for some ε > 0), then α is transcendental. We show here that αb,c

is approximable to degree c− δ. Fix a k and write

αb,c = P/Q +
∑

n>k

1

cnbcn , (2.3.13)

where gcd(P, Q) = 1 and Q = ckbck
. The sum over n gives

|αb,c − P/Q| <
2

ck+1(Q/ck)c
<

ckc

Qc
. (2.3.14)
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Now ck log b + k log c = log Q, so that ck < log Q/ log b, and we can write

ckc < (log Q/ log b)c = Qc(log log Q−log log b)/ log Q. (2.3.15)

Thus for any fixed δ > 0,

|αb,c − P/Q| <
1

Qc(1+log log b/ log Q−log log Q/ log Q)
<

1

Qc−δ
, (2.3.16)

for all sufficiently large k. 2

Consider now the BBP sequence associated with α2,3, namely the sequence
defined by x0 = 0, and

xn = {2xn−1 + rn} (2.3.17)

where rn = 1/n if n = 3k, and rn = 0 otherwise. Successive iterates of this
sequence are:

0, 0, 0,
1
3
,

2
3
,

1
3
,

2
3
,

1
3
,

2
3
,

4
9
,

8
9
,

7
9
,

5
9
,

1
9
,

2
9
,

4
9
,

8
9
,

7
9
,

5
9
,

1
9
,

2
9
,

4
9
,

8
9
,

7
9
,

5
9
,

1
9
,

2
9
,

13
27

,
26
27

,
25
27

,
23
27

,
19
27

,
11
27

,
22
27

,
17
27

,
7
27

,
14
27

,
1
27

,
2
27

,
4
27

,
8
27

,
16
27

,
5
27

,
10
27

,
20
27

,

13
27

,
26
27

,
25
27

,
23
27

,
19
27

,
11
27

,
22
27

,
17
27

,
7
27

,
14
27

,
1
27

,
2
27

,
4
27

,
8
27

,
16
27

,
5
27

,
10
27

,
20
27

,

13
27

,
26
27

,
25
27

,
23
27

,
19
27

,
11
27

,
22
27

,
17
27

,
7
27

,
14
27

,
1
27

,
2
27

,
4
27

,
8
27

,
16
27

,
5
27

,
10
27

,
20
27

,

(2.3.18)

A pattern is clear: the sequence consists of a concatenation of triply-repeated
segments, each consisting of fractions whose denominators are successively higher
powers of 3, and whose numerators range over all integers less than the denom-
inator that are coprime to the denominator. Indeed, the successive numerators
in each subsequence are given by the simple linear congruential pseudorandom
number generator zn = 2zn−1 mod 3j for a fixed j.

What we have observed is that the question of the equidistribution of the
sequence (xn) (and, hence, the question of the normality of α2,3) reduces to the
behavior of a concatenation of normalized pseudorandom sequences of a type
(namely linear congruential) that have been studied in mathematical literature,
and which in fact are widely implemented for use by scientists and engineers.
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These observations lead to a rigorous proof of normality for many of these con-
stants. In particular, we obtain the result that each of the constants

αb,c =
∑

n=ck>1

1

nbn
=

∞∑

k=1

1

ckbck , (2.3.19)

where b > 1, and c is odd and coprime to b, is b-normal. This result was first
given in [7]. One may present significantly simpler proof, although it requires a
modest excursion into measure theory and ergodic theory.



Chapter 3

Historia Cyclometrica

3.1 1 Kings, 2 Chronicles, and Maimonides

We quote two versions of the famous and controversial biblical text suggesting
that setting Pi equal to three sufficed for the Old Testament. These are:

Then he [Solomon] made the molten sea: it was round, ten cubits
from brim to brim, and five cubits high. A line of thirty cubits would
encircle it completely. [29, 1 Kings 7:23]

and:

Then he made the molten sea: it was round, ten cubits from rim to
rim, and five cubits high. A line of thirty cubits would encircle it
completely. [29, 2 Chronicles 4:2]

Several millennia later the great Rabbi Moses ben Maimon Maimonedes
(1135-1204) is translated by Tzvi Langermann, in “The ‘true perplexity’ ” [27,
p. 165] as clearly asserting the irrationality of Pi.

You ought to know that the ratio of the diameter of the circle to its
circumference is unknown, nor will it ever be possible to express it
precisely. This is not due to any shortcoming of knowledge on our
part, as the ignorant think. Rather, this matter is unknown due to
its nature, and its discovery will never be attained.

29
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3.2 Francois Viète. Book VIII, Chapter XVIII.

3.2.1 Ratio of Regular Polygons, Inscribed in a Circle, to
the Circle

Archimedes squared the parabola by continuously inscribing triangles that are
in a rational ratio1. For, having inscribed the greatest possible triangle
in the parabola, he further inscribed triangles in continuous proportion to the
greatest, namely in the constant ratio 1 to 4, infinitely. And so he concluded
that the parabola is four thirds of that greatest triangle. But Antiphon could
not square the circle in that way, since triangles inscribed continuously in a
circle are in an irrational ratio and constantly changing. But will it not be
possible to square the circle, then? For if a figure, composed of triangles that are
constructed successively and infinitely in the ratio 1 to 4 to the given greatest
triangle, is made four thirds of the same, then there is a certain knowledge of the
infinitely many. And it is possible to compose a plane figure of triangles that are
infinitely and continuously inscribed in a circle in a ratio, albeit irrationals
and constantly changing. And this composed figure will have a certain ratio
to the greatest inscribed figure. The Euclideans, however, will maintain with
authority that an angle greater than an acute and smaller than an obtuse is
not a right angle. About that I propose the following so that it is possible to
philosophize more freely about the uncertain and changing [ratio] of any regular
polygon, inscribed in a circle, to a polygon with an infinite number of sides, or
a circle if you will.

Proposition 1. If two regular polygons be inscribed in the same circle, and if
furthermore the number of sides or angles of the first one is half of the sides
or angles of the second one, then the first polygon will be to the second as the
apotome of the first side is to the diameter. (’Apotome of a side’ is my name
for the cord which subtends the arc of the semicircle that supplements the arc
subtended by the side.)

[Proof of Proposition 1.] Thus, in a circle with centre A, diameter BC, let any
regular polygon be inscribed, whose side is BD. And let the arc BD, bisected at
E, be subtended by BE [and ED]. That is to say, let another polygon be inscribed
whose side is BE. So the number of sides or angles of the first polygon will be
half of the number of sides or angles of the second. Let DC be joined. I say that
the first polygon with side BD is to the second polygon

1Greek in original is rendered in small capitals.
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end of page 398 2

with side BE or ED as DC to BC. For let DA, ED be joined. The first polygon
consists of as many triangles BAD as there are sides or angles in the first polygon.
And the second polygon consists of as many trapezia BEDA. Therefore the first
polygon is to the second as the triangle BAD is to the trapezium BEDA. But the
trapezium BEDA is divided into two triangles BAD, BED, whose common base
is BD. And triangles whose base is the same are [to each other] as the heights.
Therefore, let the half diameter AE be drawn intersecting BD in F. Thus, since
the arc BD is bisected in E, AE intersects BD at right angles. Therefore AF is
the height of the triangle BDA and FE is the height of the triangle BED. And
so the triangle BAD is to the triangle BED as AF to EF, and componendo the
triangle BAD to the triangles BAD, BED together, that is the trapezium BEDA,
as AF to AE. And the first polygon will be to the second in that ratio, too. But,
AF is to AE or AB as DC is to BC; for, the angle BDC is right, as is the angle
BFA, and therefore AF and DC are parallel. Thus the first polygon, whose side
is BD, is to the second polygon, whose side is BE or ED, as DC to BC. Which
was to be shown.

Proposition 2. If in one and the same circle infinitely many regular polygons
are inscribed, and the number of sides of the first is 1/2 of the sides of the second,
and 1/4 of the number of sides of the third, 1/8 of the fourth, 1/16 of the fifth,
and so on in continuous halvings, then the first polygon will be to the third as
the product of [lit. ‘the rectangle contained by’] the apotomes of the sides of
the first and the second is to the square on the diameter. To the fourth it will
be as the product of [lit. ‘the solid made of’] the apotomes of the sides of the
first, the second, and the third is to the cube on the diameter. To the fifth it
will be as the product of the four lengths [lit. ‘plano-planum’] of the apotomes
of the sides of the first, the second, the third, and the fourth is to the fourth
power of [lit ‘quadrato-quadratum on’] the diameter. To the sixth it will be as
the product of the five lengths [lit. ’plano-solidum’] of the apotomes of the sides
of the first, the second, the third, the fourth, and the fifth is to the fifth power of
[ lit. ‘quadrato-cubum on’] the diameter. To the seventh it will be as the product
of the six lengths [lit. ‘solido-solidum’] of the apotomes of the sides of the first,
the second, the third, the fourth, the fifth, and the sixth is to the sixth power of
[ lit. ’cubo-cubum on’] the diameter. And so on in continuous progression ad
infinitum. [Having noted Viète’s terms for various kinds of products and powers

2These page numbers refer to those of the original printed Latin text of the work reprinted
in this volume.
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of geometrical magnitudes we henceforth translate them by modern terminology
for products.]

[Proof.] Let B be the apotome of the side of the first polygon, C of the second,
D of the third, F of the fourth, G of the fifth, H of the sixth. And let the
diameter of the circle be Z. According to the first proposition the first polygon
will be to the second as B to Z; therefore the product of B and the second
polygon will be equal to the product of Z and the first polygon. But the second
polygon will be to the third as C to Z; consequently the product of the second
polygon and B, that is the product of the first polygon and Z, will be to the
product of the third polygon and B as C to Z. Therefore the product of the
first polygon and Z squared equals the product of the third polygon and the
product of B,C. Therefore the first polygon is to the third as the product of B,C
to Z squared. And the product of the third polygon and the product B×C is
equal to the product of the first polygon and Z squared.¿ Again, according to
the same previous proposition, as the third polygon is to the fourth, so is D to
Z. And consequently, the product of the third and the rectangle B times C, that
is the product of the first and Z squared, is to the product of the fourth and the
rectangle B times C, as D to Z. Therefore, the product of the first [polygon] and
Z to the third power is equal to the product of the fourth [polygon] and B times
C times D. Therefore the first polygon is to the fourth as B times C times D to
Z cubed. By the same method of demonstration it [the first polygon] will be to
the fifth as B times C times D times F to Z to the fourth power. To the sixth
as B times C times D times F times G to Z to the fifth power. To the seventh
as B times C times D times F times G times H to Z to the sixth power. And so
forth in this constant progression ad infinitum.

end of page 399

Corollary. Therefore the square inscribed in the circle will be as the side of this
square to the highest power of the diameter divided by the continuous product of
the apotomes of the sides of the octagon, the sixteen-gon, the polygon with 32
sides, with 64 sides, with 128 sides, with 256 sides, and of all the others in the
half ratio of angles and sides.

[Proof.] For, let the square be the first polygon inscribed in the circle; then
the octagon will be the second, the sixteen-gon the third, the thirty-two-gon the
fourth, and so on in continuous order. Thus the square inscribed in the circle
will have the same ratio to the extreme polygon–with infinitely many sides–as
the product made by the apotomes of the sides of the square, the octagon, the
sixteen-gon, and all the others in the half ratio ad infinitum has to the highest
power of the diameter. And by a common division [the square inscribed in the
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circle will have the same ratio to the extreme polygon] as the apotome of the side
of the square has to the highest power of the diameter divided by the product of
the apotomes of the sides of the octagon, sixteen-gon, and the others in double
ratio ad infinitum. But the apotome of the side of the square inscribed in a circle
is the side itself, and the polygon with infinitely many sides is the circle itself.

Let the circle’s diameter be 2, and the side of the inscribed square be
√

2. The

apotome of the 8-gon is
√

2 +
√

2. The apotome of the 16-gon is

√
2 +

√
2 +

√
2.

The apotome of the 32-gon is

√
2 +

√
2 +

√
2 +

√
2. The apotome of the 64-gon

is

√
2 +

√
2 +

√
2 +

√√
2 + 2. And so on in that progression.

But then, let the diameter be 1 and the [area of the] circle N. [Vi‘ete writes,
in the manner of Diophantus ‘1N’.] 1/2 [the area of the inscribed square] will be
to N as

√
1/2 to the unit divided by√

1/2 +
√

1/2, times

√
1/2 +

√
1/2 +

√
1/2,

times

√
1/2 +

√
1/2 +

√
1/2 +

√
1/2,

times

√√√√
1/2 +

√
1/2 +

√
1/2 +

√
1/2 +

√
1/2,

times

√√√√√1/2 +

√√√√
1/2 +

√
1/2 +

√
1/2 +

√
1 +

√
1/2.

Let the diameter be X and the circle (equal to) the plane area A. The half
square on X will be to the area A as the side of the half square on X to the
greatest power of X divided by the product of the binomial square root [i.e. a
square root of the sum of two terms] of (1/2X2 the square root of 1/2X4) times
the binomial square root of (1/2X2+ the binomial square root of (1/2X4+ the
square root of 1/2X8 ))) times the binomial square root of (1/2X2+ the binomial
square root of (1/2X4+ the binomial square root of (1/2X8+the square root of
1/2X16)))... times ... etc. ad infinitum while observing this uniform method.

3.2.2 Defense Against the New Cyclometry or anti-axe.

Those who have tried to set the circle equal to thirty-six segments of the hexagon
by means of their figures which they call hatchets, unluckily are wasting their
efforts. For how can determined results be obtained from splitting completely
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undetermined magnitudes? If they add or subtract equals, if they divide or
multiply by equals, if they invert, permute and at last increase or decrease by
arbitrary degrees of proportion, they will not advance one inch in their research,
but will make the mistake that logicians call begging the question, and
Diophantines [call] non-quantities. Or they delude themselves by false cal-
culations, though they could have foreseen it if any light from the true analytic
doctrine had enlightened them. Others, however, who are terrified by these
one-edged double bladed weapons and already are lamenting that Archimedes
is wounded by them, are quite unfit for war. But Archimedes lives, nor do
the false writings about the truth, the false reckonings, the Non-
proofs, the magnificent words, shock him. But in order that they may live more
secure, I bring them “Shields decorated with clouds and weapons untouched by
slaughter,” but hard to axe, wherewith they can fortify themselves to begin
with, ready to reinforce them with means for war if the enemies’ impudence
be too fierce.

Proposition 1. The circumference of a dodecagon inscribed in a circle has a
ratio to the diameter (that is) less than triple plus one-eighth.

With centre A and an arbitrary radius AB let the circle BCD be described,
in which let BC be taken as arc of the hexagon [i.e. an arc equal to 1/6 of the
circumference], which is bisected at D, and let DB be subtended. Thus DB is
the side of the dodecagon; and if it be extended twelve times to E, DE will be
equal to the circumference of the dodecagon inscribed in the circle BDC. Let the
diameter DF be drawn. I say that DE to DF has a ratio less than triple plus
one-eighth.

For, let BC and BA be joined, and let the diameter DF intersect BC at
G. Therefore it will bisect it at right angles. And let the triangle DEH be
constructed similar to the triangle DBG.

Since the line BC is subtended under an arc of the hexagon, BA or DA is
equal to BC. Therefore, if AC or BC are composed of eight (equal) parts, BG is
four of the same (parts). So the square on AG is [64 − 16 =]48, and so AG is
greater than 6 12/13 [since 48 = 7(7− 1/7), and the arithmetic mean of the two
factors is 7− 1/14.

Since the geometric mean of the two factors (which is the square root of their
product) is less than the arithmetic mean

√
48 < 6 13/14. A good guess therefore

is that
√

48 > 6 12/13, which is easily verified.] Therefore DG is less than 1 1/13.
And since DE is composed of twelve times DB, EH will also be twelve times

end of page 437

BG, and DH twelve times DG. Therefore EH is 48 of the same parts. And DH
will be less than 13, namely less than 12 12/13. The square on the side 48 is
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2304, and on 13 it is 169. Those two square added make 2473, not quite 2500,
the square on the side 50. Therefore the line DE, whose square is equal to the
sum of the squares on EH and DH, is less than 50. And the ratio of 50 to 16 is
triple and one-eighth exactly. Therefore the ratio of DE to DF is less than triple
and one-eighth. Which was to be proved.

Arithmetic is absolutely as much science as geometry [is]. Rational magni-
tudes are conveniently designated by rational numbers, and irrational [magni-
tudes] by irrational [numbers]. If someone measures magnitudes with numbers
and by his calculation get them different from what they really are, it is not the
reckoning’s fault but the reckoner’s.

Rather, says Proclus, arithmetic is more exact than geometry. To
an accurate calculator, if the diameter is set to one unit, the circumference of
the inscribed dodecagon will be the side of the binomial [i.e. square root of
the difference] 72−√3888. Whoever declares any other result, will be mistaken,
either the geometer in his measurements or the calculator in his numbers.

That the ratio of the circumference of the circle to its diameter is greater than
triple and one-eighth as well as less than triple and one seventh has not been
doubted up till now by the school of mathematicians, for Archimedes proved
that convincingly. So one should not, by a false calculation, have induced a
manifest absurdity, that a straight line is longer than the circular arc ter-
minating at the same endpoints, since Archimedes assumes the contrary from
the common notion and Eutocius demonstrates the same, defining generally
that of all lines having the same extremities, the straight line is
the shortest.

Proposition 2. If the half diameter of the circle be divided by the quadratrix,
the part from the centre to the quadratrix is greater than the mean proportional
between the half diameter and two fifths of the half diameter.

Let ABC be a quadrant of a circle, and BD the quadratrix; let AE be taken
equal to two fifths of the half diameter AB or AC; and let AF be made the mean
proportional of AE, AC. I say that AD is greater than AF. For, from what was
proved by Pappus about the quadratrix, the half diameter AB or

end of page 438

AC is the mean proportional of the arc BC and AD. Let AB be 7 parts; then
the arc BC, which is the a quarter of the perimeter, will be less than 11, for the
diameter is 14, and the perimeter is less than 44. But then, let AB be 35 parts;
then the arc BC will be less than 55. But the [area] contained by AD and [the
arc] BC is equal to the square on AB. Therefore AD is greater than 22 [+] 3/11.
And of those units of which AB, that is AC, is 35, AE is 14, but AF is less than
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22 [+] 3/22. [See bracketed explanation of a similar claim near end of p. 437.]
Therefore AD is greater than AF. Which was to be proved.

Therefore, if from the diameter AB be subtracted the line AG equal to AF,
and if the parallelogram GHDA be completed, it will be an oblong rectangle, not
a square. And when the square BC is completed, the diagonal BK will not go
through H, but through some point I further from D. It was important to notice
this to avoid a false diagram.

Proposition 3. The square on the circumference of the circle is less than ten
times the square on the diameter.

Let the diameter be 7, the square on the diameter will be 49, and ten times
that 490. But the circumference of the circle will be less than 22, and conse-
quently its square less than 484. The Arabs’ opinion that ’the square on the
circumference of the circle is equal to ten times the square on the diameter’
has since long been rejected. He is not to be tolerated who contradictorily
proposes what Archimedes proves to be unprovable.

Proposition 4.The circle has a greater ratio to the hexagon inscribed in it than
six to five.

Let the hexagon BCDEFG be inscribed in the circle with centre A. I say
that the circle with centre A has a greater ratio to the hexagon BCDEFG than
six to five. When AB, AC BC are joined, let the perpendicular AZ fall on BC.
Then, since in triangle ABC the legs AB, AC are equal, the base is bisected in
Z, and BZ and ZC are equal. But the triangle ABC is equilateral, for its legs
are both half diameters, and the base - since it is the side of the hexagon - is
also equal to the half diameter. Now, if the half diameter BA or AC be set to
30 [units], BZ or ZC becomes 15, and AZ becomes less than 26, whose square is
676. But the difference between the squares [on] AB, AZ is only 675. Further,
the rectangle contained by BZ, ZA is equal to the triangle BAC. So, let 15 be
multiplied by 26, they become 390. Therefore, of such units of which the square
[on] AB is 900, of the same [units] the triangle ABC will be less than 390, or -
if all be divided by 30 - if the square AB is 30, the triangle ABC will be less
than 13. Let AD, AE, AF, AG be joined; the hexagon BCDEFG consists of six
triangles equal to BAC. Therefore, of such [units] of which the square [on] AB
becomes 30, of the same [units] the hexagon will be less than 78. Or, of such
units of which the square [on] AB becomes five, of the same [units] the hexagon
will be less than thirteen.

end of page 439

But as the perimeter of the circle is to the diameter, so is the rectangle made
by the perimeter of the circle and a quarter of the diameter to the area made
by the diameter and a quarter of the diameter. But the rectangle made by the
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perimeter of the circle and a quarter of the diameter is equal to the circle. And
the area made by the diameter and a quarter of the diameter is the square on
the half diameter. Therefore, as the perimeter is to the diameter, so is the circle
to the square on the half diameter. Now, of such units as the diameter is 1, the
perimeter is greater than 3[+]10/71, and so evidently greater than 3[+]10/8 or
3[+]1/8. And of such units as the square on the diameter is 5 (as above) the
circle is greater than 15[+]5/8. But the hexagon was less than 13 of the same
units. Therefore the circle will have to the hexagon inscribed in it a greater
ratio than 15[+]5/8 to 13, that is, as 125 to 104, or as [750 to 624, that is] 6 to
4[+]124/125, and so evidently greater than six to five. Which was to be proved.

Therefore, those who set the circle equal to the hexagon and a fifth part
of the hexagon do not square it properly, since it is greater according to the
limits set by Archimedes from his own principles. Our schools are Platonic:
Oh splendid professors; therefore, do not fight against the geometric principles.
And just as these axe-swingers have truncated the circle, they may now - as
a kind of compensation for the damage done - themselves be shortened at the
pointed end of their swallow tail.

Proposition 5. Thirty-six segments of the hexagon are greater than the circle.

For, since the circle has a greater ratio to the hexagon inscribed in it than
six to five, or as 1 to 5/6, therefore the difference between the circle and the
hexagon will be greater than one-sixth of the circle. But the circle differs from
the hexagon by six segments of the hexagon. Thus six segments of the hexagon
are greater than one-sixth of the circle, and so thirty-six segments will be greater
than one, that is: the circle. What was to be proved.

Proposition 6. Any segment of the circle is greater than the sixth of the similar
segment similarly drawn in a circle whose radius is equal to the base of the
segment set out.

In the circle BDC described around the centre A let a cord be subtended
under an arbitrary arc BD, and let a straight line BE touch the circle, and with
B as centre and BD as radius let another circle DEF be drawn.

Then the arc ED will be similar to half of the arc BD. And then, let the arc
DF be taken double of DE, and let BF and AD be joined. Thus the sectors BAD
and FBD will be similar. I say that the segment of the circle BDC contained by
the line BD and the arc under which it is suspended, is greater than one-sixth
of the sector FBD.
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For, let a spiral line whose origin is B be drawn, crossing [the circle] at D so
that BD is the same part of the first revolution BEZ [the point Z is not labeled in
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the diagram] as the angle EBD is of four right angles. Thus the area contained
by the straight line BD and the spiral is the third part of the sector EBD, for
that has Pappus proved after Archimedes in proposition xxii in Book IV of the
Mathematical Collection. Therefore the [sector] FBD will be six times the same
area, for the sector FBD is double of EBD by construction. The spiral does
not coincide with the circle, for that would be absurd, nor does the spiral in its
course get out of the circle before reaching point D. For, let the angle EBD be
divided arbitrarily by the straight line BGH, which intercepts the spiral in G
and the circumference in H. Then the line BD will be to the line BG as the angle
EBD to the angle EBG; that is, as the arc BD to the arc BH, according to the
conditions of spirals . But the ratio of the arc BD to the arc BH is greater than
the ratio of the cord BD to the cord BH. For greater arcs have to lesser arcs a
greater ratio than the straight lines to the straight lines that subtend those same
arcs. Therefore the line BH is greater than BG, and the same will happen to any
straight lines that divide the angle EBD. Therefore the spiral will proceed under
the arc BD and will leave some area between itself and the arc. By that area
the segment of the circle contained between the line BD and the circumference
exceeds the area which is enclosed between the same line and the spiral, and
which is proved equal to one-sixth of the sector FBD. Therefore that segment
will be greater than one-sixth of the sector FBD. Which was to be proved.

Corollary. And from this it is also obvious that thirty-six segments of the
hexagon are greater than the circle.

For when BD happens to be a segment of the hexagon, the sectors FBD and
BAD will be equal since their circles’ half diameters BD [and] AD will be equal.
Thus six segments of the hexagon will be greater than the sector BAD, and
therefore thirty-six segments greater than six sectors, that is, the whole circle.
It is possible to propose a no less general theorem to be proved by parabolas, or
rather by the same geometrical methods through which the parabola is squared:
Any segment of the circle is greater than four-thirds of the isosceles triangle
inscribed in the segment with the same base. By that, it will soon appear that
the ratio of thirty-six segments of the hexagon to the circle is greater than 48 to
47. But to an even more accurate calculator only thirty four segments and an
area little greater than two-thirds but less than three-quarters of a segment can
be found to complete the circle. It is possible in this way to make known to the
eyes that the excess is greater than one-third of a twelfth.

Proposition 7. In a given circle to cut off the thirty-sixth part of the circle
itself from a segment of the hexagon.

Let a circle be given with centre A, diameter BC and a segment of the
hexagon BD. It is required, in the given circle BDC from the segment of the
hexagon contained by the cord BD and the arc under which it is suspended,
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to cut off the thirty-sixth part of the circle itself. Let the straight line BE be
tangent to the circle, and let a spiral line be described, with origin B and passage
through D, so that BD is the same part of the first revolution BEZ as the angle
EBD is of four right angles, and with centre B and radius BD let the circle DE
be described. Then the third part of the sector EBD is the area contained by
the line BD and the spiral. But BD is equal to the half diameter BA, for BD is
the side of the hexagon by hypothesis, and the angle EBD is one-third of a right
angle because the size of arc BD is two-thirds of a right angle. Thus the sector
EBD is a twelfth of the circle, and consequently the spiral area BD is a third of
the twelfth, that is a thirty-sixth part of the circle. The spiral will pass through
the segment and will not meet the circle, (nor will it cut off a circular area
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on its way from B) until it reaches the point D, as has been proved. Thus, in the
given circle BDC the thirty-sixth part of the circle itself has been cut off from
the hexagon’s segment BD. Which was to be done.

And by this sevenfold shield let the blade of the soft and blunt axe have been
weakened enough.

If some should want a sketch of the fight of the axe itself, lest they miss
it let them study it in a few short pages.

ANALYSIS OF THE CIRCLE, according to the axe-swingers.

1. The circle consists of six scalpels of the hexagon.

2. The scalpel of the hexagon consists of [i.e. is equal to] the segment of the
hexagon and the triangle of the hexagon, or the (so-called) ’‘major’.

3. The triangle of the hexagon consists of a segment of the hexagon and a
hatchet.

4. The hatchet consists of two segments of the hexagon and the complement
of the hatchet.

5. The complement of the hatchet consists of one segment of the hexagon and
the remainder of a segment.

6. But on the other hand, the complement of the hatchet consists of the minor
triangle and the remainder of the minor triangle. The minor triangle is [by
definition] the fifth part of the hexagon, the so-called ‘major’.
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end of page 442

TWO TRUE LEMMAS, First: Ten minor triangles are equal to six segments
of the hexagon and two complements of the hatchet. For, since [“Quorum” in text
should be “Quoniam”, a common misreading] the hexagon’s triangle consists of
a segment and a hatchet, and the hatchet of two segments and a complement,
therefore two triangles of the hexagon consist of six segments and two comple-
ments. But two triangles of the hexagon, or the major, are equal to ten minor
[triangles] (by definition). Therefore ten minor triangles will be equal to six
segments and two complements. What was to be proved.
Second: Forty minor triangles are equal to the triangle and two complements of
the hatchet.

For, since the circle equals six scalpels of the hexagon, but six scalpels are
equal to six triangles of the hexagon and six segments, and further six triangles
of the hexagon make thirty minor triangles, therefore the circle equals thirty
minor triangles and six segments. Let two complements of the hatchet be added
to both sides.

Thus the circle plus two complements of the hatchet will be equal to thirty
minor triangles and six segments and two complements. But six segments and
two complements make ten minor triangles, according to the previous lemma.
Therefore forty minor triangles are equal to six segments of the hexagon and two
complements of the hatchet. Which was to be proven.

fallacy: I say that the minor triangle is equal to its remainder. By way
of proof: Since the circle plus two complements of the hatchet (the latter being
equal to two minor triangles plus two remainders of the minor triangle) is equal to
thirty six minor triangles and another four, let from both sides [of the equation]
be taken away two minor triangles.

When from this side they are subtracted from two complements, two remain-
ders of the [minor] triangle are left. When from that side they are subtracted
from four triangles, two triangles are left. Therefore two remainders equal two
triangles.

Refutation of the faultiness of logic. Equals must be subtracted from
equal wholes, not from equal parts, to make the remainders equal. To subtract
something from a part of equals is to assume that the remainder[s] of the whole[s]
are equal, as here the circle is set equal to thirty-six minor triangles. But that
is flatly denied and totally false. To grant oneself what should be proved looks
as if one wants to show how to make an error.
FOR ANOTHER FALLACY, TWO TRUE LEMMAS. First: Twenty-
four quarters of the hexagon’s triangle plus six segments are equal to twenty-four
segments and six complements of the hatchet.
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For, since the triangle of the hexagon consists of three segments and a comple-
ment of the hatchet, but the circle is composed of six triangles and six segments,
therefore twenty-four segments and six complements are equal to the circle.

And since four quarters make one whole, also twenty-four quarters of the
hexagon ’s triangle plus six segments are equal to the circle. But things that
are equal to one [and the same] are equal to one another. Therefore twenty-four
quarters of the hexagon’s triangle plus six segments are equal to twenty-four
segments and six complements of the hatchet. Which was to be proved.

end of page 443

Second. If there are three unequal magnitudes, of which the middle taken twenty-
four times and added to the least taken six times produces the same magnitude as
the least taken twenty-four times and added to the greatest taken six times, then
the difference between four times the middle and thrice the least will be equal
to the greatest. For, let B be the least, D the middle, A the greatest one. By
hypothesis, then, 6 B plus 24 D = 6 A plus 24 B. Let 24 B be subtracted from
both sides. Then 24 D minus 18 B = 6 A. If all be divided by 6, 4 D minus 3 B
= A. That is exactly what was stated.
unproved theorem. There are three unequal plane figures that are commen-
surable between them; the smallest is the segment of the hexagon; the middle is
a quarter of the triangle of the hexagon; the greatest is the complement of the
hatchet of the hexagon. Inequality and the degree of inequality could be proved,
but nobody will ever prove commensurability and incommensurability unless he
first has compared the hexagon’s triangle or another rectilineal figure with the
circle. But that comparison is unknown hitherto, and if it is feasible, it is
in the lap of the gods.

pseudo-porism. Such parts of which a quarter of the hexagon’s triangle
will be five, of the same parts the segment must necessarily be four.

by way of proof. For, let B be a segment of the hexagon, and D a quarter
of the hexagon’s triangle, and Z the complement of the hatchet. Now, since
there are three unequal magnitudes, of which B is the least, D the middle, and
Z the greatest, [therefore] they will have to one another [a ratio] as a number to
a number. Suppose that D is five parts, and that B is three or four parts, and
no more. Let it be, if it is possible, three parts; according to the first and second
lemma, Z will be eleven. So the complement will consist of two segments and a
twelfth of a segment, but that contradict our senses. Therefore B is four.

Refutation of the faultiness of logic. If the magnitude D is five parts, it
can be proved that B is greater than three parts. But will B therefore be four,
even admitted-what is unknown-that B is to D as a number to a number? That
conclusion is totally invalid. For, what if B is said to be four parts plus some
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rational fraction? Is not four and a half to five as a number to a number, that is,
as 9 to 10? Nobody but an non-logician or non-geometer will deny that.
In fact, if D is set to 11 parts, B becomes a bit greater than 9, and Z a little less
than 17, according to Archimedes’ limits. However, from these two fallacies
were spread the other axefighters’ errors concerning the area of the
circle and the surface of the sphere.

end of the fight against the axe-swingers.
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The second fight against the axe-swingers. An outline, from the
addendum.

In a circle with centre A let an arc of the hexagon BCD be taken, and let
AB, AD, BD be joined. Further, from AB let a line segment be cut off whose
square is to the square on AB as one to five. Let it be BE, and through E let a
parallel to AD be drawn, intersecting BD in F. Then the triangle BEF will be
equiangular with BAD and one-fifth of it.
Lemma 1. True. Thirty-seven triangles BEF are greater than the circle BCD.

For, in the comments to the Canon Mathematicus, the circle is shown to have
a ratio to the square on the half diameter that is very close to 31,415,926,536
to 10,000,000,000. If, therefore, the side AB, that is the half diameter, is set to
100,000, the height of the equilateral triangle ABD is 86, 602[+]54, 038/100, 000.
Therefore:

The triangle ABD becomes 4,330,127,019. The triangle BEF becomes 866,025,404.
Thirty-seven triangles BEF 32,042,939,948 [The circle] 31,415,926,536 [The tri-
angles] exceed the circle by 617,013,412.
Lemma 2. True. The circle BCD is not greater than thirty-six segments BCDF.

Even more, the circle BCD is far less than thirty-six segments BCDF. For
the sector BAD is the sixth part of the whole circle. Therefore

The circle is 31,415,926,536. The sector BAD is 5,235,987,756. Let the trian-
gle ABD be subtracted from it 4,330,127,019. There remains the hexagon sector
or the mixtiline space BCDF 905,860,737. But three dozens of such segments
are 32,610,986,532 exceeding the circle by 1,195,059,996.

end of page 445

pseudo-porism. Consequently thirty-seven triangles BEF are greater than
thirty-six segments BCDF. Refutation of the false conclusion. In grammar, to
give to the ships the south winds, and to give the ships to the south winds,
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mean the same thing. But in geometry, it is one thing to assume that the circle
BCD is not greater than thirty-six segments BCDF and another to assume that
thirty-six segments are not greater than the circle BCD. The first is true, the
second is false. Then, when I argue in this way:

Thirty-seven triangles are greater than the circle, but thirty-six segments
are not greater than the circle, therefore thirty-seven triangles are greater than
thirty-six segments,

I conclude syllogistically, but wrongly, because the assumption is false. But
I sin against the laws of logic when I establish the syllogism in this formula:

The circle is smaller than thirty-seven triangles. The circle is not greater than
thirty-six segments. Therefore thirty-seven triangles are greater than thirty-six
segments.

But this is an error of the eyes, not of the intellect. For, when at
the beginning the Circle-measurers had proposed that the circle is not greater
than thirty-six segments of the hexagon, they read it in the light of subsequent
events as ’not less than’, and thus extracted the false corollary.

end

3.3 Christian Huygens. Problem IV, Proposi-

tion XX.

3.3.1 Determining the Magnitude of the Circle

To find the ratio between the circumference and the diameter; and, given chords
in a given circle, to find the lengths of the arcs that they subtend.

Consider a circle of center D, with CB as a diameter, and let AB be an arc
one-sixth of the circumference, for which we draw the chord AB and the sine
AM. If we suppose then that the half-diameter DB is 100,000 parts, the chord
BA will contain the same number. But AM will be made of 86,603 parts and
not one less (which means that if we should take away one part or one unit of
the 86,603 we would have less than what it should be), since it is half of the side
of the equilateral triangle inscribed in the circle.

From there, the excess of AB over AM becomes 13397, less than the true
value. One third of it is 4,4652

3
, which, added to the 100,000 of AB, gives

104,4652
3
, which is less than arc AB. And this is a first lower limit; in the

following, we will find another one, closer to the real value. But first we must
also find an upper limit, according to the same theorem.

Then a fourth proportional is to be found for three numbers. The first equals
the double parts of AB and the triple of AM. It will then be 459,809, less than
the real value, (since we also have to make sure that this number here is less;
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and in the same way with the other, as we shall specify) the second is equal to
the quadruple of AB and AM, which is 486,603, more than the real value. And
the third is one-third of the excess of AB over AM, 4,466, more than the real
value which, added to AB or 100,000 gives 104 ,727, larger than the number of
parts that arc AB, a sixth of the periphery, contains [according to the above].
Then we already found the length of arc AB within an upper and lower limit, of
which two the last is far closer to the real value because the number 104, 719 is
closer to the real value.

But through these two, we will obtain another lower limit, more exact than
the first one, using the following precept, which results from a more precise
examination of the center of gravity .

end of page 384

Add four-thirds of the difference of the above limits to the double of the chord
and the triple of the sine, and the same ratio as between the line made this way
and three and one-third, or 10

3
times the sum of the sine and the chord, also

exists between the excess of the chord over the sine and another line. This last
one added to the sine will be a line smaller than the arc.

The lower limit was 104,4652
3
; the upper one is 104,727; their difference is

2611
3
. Again we need to find a fourth proportional to three numbers. The first

one is the double of the parts of AB increased by the triple of AM and by four-
thirds of the difference of the limits. We find 460,158, larger than the real value.
The second is the 10

3
of AB and AM taken together, 622,008, smaller than the

real value. Last the third is the excess of AB over AM, 13,397, smaller than the
real value. The fourth proportional to these numbers is 18,109, smaller than the
real value.

Then if we add this to the number of parts of AM, 86,6021
2
, less than the

real value, we get 104, 7111
2
, less than arc AB. Thus the sextuple of these parts,

628,269, will be less than the whole circumference. But because 104,727 of
these parts were found larger than arc AB, their sextuple will be larger than the
circumference. Thus the ratio of the circumference to the diameter is smaller
than that of 628,362 to 200,000 and larger than that of 628,268 to 200,000,
or smaller than that of 314,181 [to 100,000] and larger than that of 314,135
to 100,000. From that, the ratio is certainly smaller than 31

7
and larger than

310
71

. From there also is refuted Longomontanus’s mistake, who wrote that the
periphery is larger than 314,185 parts, when the radius contains 100,000.

Let us suppose that arc AB is 1
8

of the circumference; then AM, half of the
side of the square inscribed in the circle, will measure 7,071,068 parts, and not
one less, of which the radius DB measures 10,000,000. On the other hand, AB,
side of the octagon, measures 7,653,668 parts and not one more. Through this
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data, we will find, in the same manner as above, as first lower limit of the length
of arc AB 7,847,868. Then as upper limit 7,854,066. And from these two, again,
a more precise lower limit 7,853,885. This results in the ratio of the periphery
to the diameter being less than 31,4161

4
, and more than 31,415, to 10,000.

And since the difference between the upper limit 7,854,066 and the real length
of the arc
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is less than 85 parts (indeed, arc AB, according to what we proved above is larger
than 7,853,981), and since 85 parts are less than two seconds, which is 2

1,296,000

of the circumference, because the whole circumference has more than 60,000,000
parts, it is obvious that, if we try to find the angles of a right triangle using
the given sides, the same way as we did for the upper limit above, the error can
never be more than two seconds; even if the sides of the right angle are equal,
as they were here in triangle DAM.

But if the ratio of side DM to MA is such that the angle ADM does not
exceed a quarter of a right angle, the error will not be more than a third scruple
. For, taking arc AB equal to 1

10
of the circumference, AM will be half of the

side of the equilateral octagon inscribed in the circle, and equal to 382,683,433
parts and not more; but, AB will be the side of the sixteen-gon and then will
contain 390,180,644 parts, and not one more, with the radius DB containing
1,000,000,000 parts. In this way is found a first lower limit, of the length of
arc AB, of 392,679,714 parts. And the upper limit is 392,699,148. And from
there again a lower limit of 392,699,010. But, what was proved above results in
arc AB, 1

10
of the circumference, being larger than 392,699,081 parts, which the

upper limit exceeds by 67 parts. But these are less than a third scruple, which
is 1

77,760,000
of the whole circumference , since the circumference is larger than

6,000,000,000.
Then, out of these new limits just found, the ratio of the circumference to the

diameter will come smaller than 314,5931
6

to 1,000,000 but larger than 314,592
to 1,000,000.

And if we take an arc AB equal to 1
60

of the circumference, which is six parts
of the total 360, AM will be half of the side of the (inscribed) 30-gon, made of
10,452,846,326,766 parts, and not one less, when the radius has 100,000,000,000,000.
And AB is the side of the (inscribed) 60-gon, 10,467,191,248,588 parts and not
one more. Through this data is found arc AB, according to the first lower limit,
10,471,972,889,195. Then the upper limit 10,471,975,512,584. And from there
the other lower limit, 10,471,975,511,302. This results in the ratio of the periph-
ery to the diameter being less than
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31,415,926,538 to 10,000,000,000, but larger than 31,415,926,533 to
10,000,000,000.

If we had to find these limits through adding the sides of the inscribed and
circumscribed polygons, we would have to go up to 400,000 sides . Because
with the 60 angles inscribed and circumscribed polygons, we only prove that the
ratio of the periphery to the diameter is less than 3,145 to 1,000, and larger than
3,140. Thus, the number of exact digits through this calculation seems to be
three times higher, and even more. But if someone tries it, he will see that the
same always happens with the following polygons [as well]; we know why but it
would take a long explanation .

On the other hand, I believe it is clear enough how, for any other inscribed
polygons, it is possible to find, through the above methods, the length of the
arcs subtended. Because, if they are larger than the side of the inscribed square,
we will have to find the length of the remaining arc on the half circumference,
the chord of which is then also given. But we must also know how to find the
chords of the half-arcs, when the chord of the full arc is given. And this way,
if we want to use bisections, we will be able to find without any difficulty for
any chord the length of its arc, as close as we want. This is useful for examining
tables of sines, and even for their composition; because, knowing the chord of a
given arc, we can determine with sufficient accuracy the length of the arc that
is slightly larger or smaller.



Chapter 4

Demotica Cyclometrica

4.1 Irving Kaplansky’s “Song of Pi”

The distinguished mathematician Irving Kaplansky (1917– ) is also a fine musi-
cian, whose daughter Lucy is an accomplished folk singer. In February of 1973,
Kaplansky composed a popular “Song about pi” of Type 2 in the sense he de-
scribes in more detail in More Mathematical People [1, pp.121-122]. He found
that out of 100 popular songs he surveyed, 70 were of Type 1 (a simple ‘AABA’
refrain), 20 were of the more complex Type 2, and ten were irregular. Half of
songs in Woody Allen films are of Type 2.

Kaplansky wrote the Pi song to illustrate the superiority of type 2: “the idea
being that you could take such unpromising material as the first fourteen digits
of pi and make a passable song out of it if you used type 2.” We reproduce his
score here in Figures 4.1 to 4.5.

4.2 Ludolph van Ceulen’s Tombstone

Ludolph van Ceulen (1540-1610) was the last to compute π seriously using
Archimedes’ method. He computed 39 digits with 35 correct in 1610 (pub-
lished posthumously in 1615). He was sufficiently proud of this accomplishment
that he had the number inscribed on his tombstone in Leiden. The tombstone
vanished long ago though the number was and is still called Ludolph’s number
in parts of Europe. The tombstone was redesigned and rebuilt from surviving
descriptions and sculpted by Cornelia Bakkum as reconsecrated July 5, 2000.
(See also [11] for a mathematical paper written for the occasion.)

47
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Figure 4.1: Kaplansky’s “Song of Pi”, page one
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Figure 4.2: “Song of Pi”, page two
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Figure 4.3: “Song of Pi”, page three
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Figure 4.4: “Song of Pi”, page four



52 CHAPTER 4. DEMOTICA CYCLOMETRICA
            ��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

Figure 4.5: Kaplansky’s “Song of Pi”, page five
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Figure 4.6: Ludolph’s rebuilt tombstone
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